Potentiality of Steric and Compression Effect in Conformational Analysis : A ¹³C NMR Study

MRIDULA VERMA* and SHIVA M. VERMA Department of Chemistry, M.M.H. College, Ghaziabad-201 001, India

Conformational analysis by ¹³C NMR spectroscopy about $N_{sp^2} - C_{sp^2}$ bond in *endo/exo* isomeric systems of bicyclo-5-heptene-2,3-N-aryl dicarboximides have demonstrated that the steric and compression effect of the non-planar cage is quite diagnostic in the study of rotational processes. In cases of *exo*-N-aryl imides where, ¹H NMR is not very sensitive, ¹³C NMR provides conclusive evidence about the rotational mode of the phenyl ring about the N-C bond.

Key Words: *endo/exo*, *syn/anti*, Conformational analysis, Asymmetric cage, ¹³C NMR.

INTRODUCTION

Restricted rotation and two non-planar conformations about N-C bond in *o*-substituted aryl imides have been demonstrated through ¹H NMR spectroscopy employing asymmetric cage moieties. The existence of two non-planar *syn/anti* conformations has been explained with the help of shielding parameters and chemical shifts on the NMR time scale^{1,2}. The restricted rotation about N-N bond and isomeric separation of hydrazones due to lone pair of nitrogen has been reported³.

The stereoelectronic control on the torsional energy barrier due to rotation about (N-C) phenyl bond helps in the separation of atropisomers and has been studied by ¹H NMR spectroscopy^{4.5}. ¹³C NMR spectroscopic technique has been applied to study the rotational process about N_{sp}²-C_{sp}² bond in system (1) and found to be advantageous over the ¹H NMR spectroscopy particularly, when the *ortho*-substituent does not contain a proton⁶. Conformational study about N-C (phenyl) bond employing *endolexo* isomeric systems of bicyclo-5-heptene-2,3-dicarboximides by ¹H NMR spectroscopy has shown duplexed signals for the *o*-substituent in the *endo* configuration (2) whereas, in the *exo*-system (3) no such evidence has been shown for the two conformations. Though, the anisotropic effect in ¹³C NMR is of lower magnitude as compared to ¹H NMR spectroscopy, the potentiality of compression effect has been shown in stereochemical context⁷⁻¹³. To explore the potentiality ¹³C NMR spectroscopy in such cases, spectral pattern of some isomeric (*endolexo*) products has been described in this communication. 6326 Verma et al.

Asian J. Chem.

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded on a FT-NMR Jeol FX-90Q spectrometer at 25° in CDCl₃ with tetramethylsilane as internal standard. VT NMR spectral measurements were made in DMSO- d_6 (Jeol NM-PVT Temperature controller, sensitivity ± 0.5 °C).

Preparation of compounds: The compounds were obtained from cyclopentadiene and maleic anhydride *endo* and *exo* adducts and substituted aromatic amines as reported earlier⁷⁻¹³.

RESULTS AND DISCUSSION

¹³C NMR spectrum of compound **I** suggests a fast rotation of the phenyl ring across the N_{sp}²-C_{sp}² bond (Table-1). Compound **II** with a methyl group at the 2'-position exhibits the following ¹³C NMR resonances: δ 17.66 and δ 18.91 for 2'-CH₃ carbon ($\Delta \delta = 1.25$ ppm), δ 45.18 and δ 45.51 for (2+3) carbons, δ 45.83 and δ 46.81 for (1+4) carbons, δ 52.33 and δ 52.77 for 7-carbons, δ 126.77 and δ 126.85 for 2'-carbon, δ 131.16 and δ 135.33 for (5+6) carbons along with aromatic carbon resonances at δ 128.29, 129.37 and 131.05 ppm.

The multiplicity in the signals for 2'-CH₃ carbon, (2+3) methine carbons, (5+6) olefinic carbons and for 2'-substituted carbon suggests the presence of two non-planar ground state conformations of the phenyl ring about the N_{sp}²-C_{sp}² bond. The shielded methyl resonance (δ 17.66) corresponds to the *syn* orientation where, it experiences both the anisotropic effect and the steric compression effect of the cage olefinic system. The other methyl resonance (δ 18.91), corresponds to the *anti* conformation. The duplexed methyl resonances are temperature dependent which coalesce at 150°. (DMSO-*d*₆) and an energy barrier¹⁴⁻¹⁶ $\Delta G_{\pm} = 21.17$ kcal/mol has been evaluated for the involved rate process. Compounds **IV** and **VI** having -Cl and -OCH₃ groups at the 2'-position exhibit duplexity for the 2', 5+6 and 2+3 carbon resonances and suggest the slow rotation of the phenyl ring about N-C bond. The shielded resonances correspond to the *syn* conformation of the substituent in the phenyl ring.

In compounds **VIII-XIV**, the N-phenyl ring is arranged to experience the effect of methylene bridge. ¹³C NMR spectrum of the compound **IX** exhibits the following characteristic resonances: δ 17.13 and δ 17.78 for the 2'-CH₃ carbon ($\Delta \delta = 0.65$ ppm), δ 44.43 and δ 45.08 for (2+3) carbons, δ 47.41 and δ 48.06 for 7-CH₂ carbon, δ 126.61 and δ 126.86 for 2'-carbon along with resonances at δ 46.65, 128.51, 129.05, 130.68, 131.87, 136.66, 137.77 ppm.

The duplexity exhibited by 2'-CH₃ carbon, (2+3) cage methine carbons, 7-CH₂ carbon is an evidence of the slow rotation and the presence of two non-planar conformations of the phenyl ring across the N-C bond. The methyl

			¹⁵ C N	MR SPECTR	AL DATA OF C	OMPOU	INDS I-VII
Compd.	C=O	Substituents	C ₅ , C ₆	C ₂ , C ₃	Substituted carbon	C'_1	Cage + aromatic carbons
Ι	176.67	-	135.39	45.41	-	134.52	46.01, 51.32, 126.29, 126.62, 128.40, 128.94
Π	176.81	17.66, 18.91	131.16, 135.33	45.18, 45.51	126.77, 126.85	134.62	45.83, 46.81, 52.33, 52.77, 128.29, 129.37, 131.05
III	176.88	21.18	138.52	45.45	126.44	134.57	45.72, 52.17, 129.26, 129.64
IV	175.90	-	132.35, 135.06	45.34, 45.99	127.58, 129.69	134.62	46.86, 52.33, 130.13, 130.24, 130.39, 131.51
V	176.45	-	134.62	45.56	127.85	134.62	45.83, 52.28, 129.26
VI	176.66	55.53, 55.75	130.56, 134.57	45.29, 45.99	154.25	134.41	46.48, 51.95, 52.28, 112.14, 120.70, 128.29, 129.37
VII	177.04	55.42	134.52	45.40	159.44	134.52	45.67, 52.12, 114.36, 124.55, 127.80

TABLE-1 ¹³C NMP SPECTRAL DATA OF COMPOLINDS LVII

TABLE-2	
¹³ C NMR SPECTRAL DATA OF COMPOUNDS VIII-XIV	

			¹³ C N	IMR SPECTR	TABLE-1 AL DATA OF C	COMPOU	JNDS I-VII	
Compd.	C=O	Substituents	C ₅ , C ₆	C ₂ , C ₃	Substituted carbon	C ' ₁	(Cage + aromatic carbons
Ι	176.67	-	135.39	45.41	_	134.52	46.01, 51.32, 1	126.29, 126.62, 128.40, 128.94
П	176.81	17.66, 18.91	131.16, 135.33	45.18, 45.51	126.77, 126.85	134.62	45.83, 46.81, 5	52.33, 52.77, 128.29, 129.37, 131.05
Ш	176.88	21.18	138.52	45.45	126.44	134.57	45.72, 52.17, 1	129.26, 129.64
IV	175.90	-	132.35, 135.06	45.34, 45.99	127.58, 129.69	134.62	46.86, 52.33, 1	130.13, 130.24, 130.39, 131.51
V	176.45	-	134.62	45.56	127.85	134.62	45.83, 52.28, 1	129.26
VI	176.66	55.53, 55.75	130.56, 134.57	45.29, 45.99	154.25	134.41	46.48, 51.95, 5	52.28, 112.14, 120.70, 128.29, 129.37
V I								
VI	177.04	55.42	134.52	45.40	159.44	134.52	45.67, 52.12, 1	114.36, 124.55, 127.80
	177.04	55.42	134.52 ¹³ C NM	45.40 IR SPECTRA	TABLE-2 L DATA OF CO	134.52	A 45.67, 52.12, 1	114.36, 124.55, 127.80
VI VII Compd.	177.04 C=O	55.42 Substituents	134.52 ¹³ C NM C ₇	$\frac{45.40}{\text{IR SPECTRA}}$ C_2, C_3	TABLE-2 L DATA OF CO Substituted carbon	134.52 MPOUN C'1	1 45.67, 52.12, 1 IDS VIII-XIV C	114.36, 124.55, 127.80 Cage + aromatic carbons
VI VII Compd. VIII	177.04 C=O 176.91	55.42 Substituents	134.52 ¹³ C NM C ₇ 50.32	$\frac{45.40}{\text{IR SPECTRA}}$ $\frac{C_2, C_3}{45.81}$	159.44 TABLE-2 L DATA OF CO Substituted carbon –	134.52 MPOUN C'1 134.81	A 45.67, 52.12, 1 ADS VIII-XIV C 46.15, 126.56, 1	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21
VI VII Compd. VIII IX	177.04 C=O 176.91 176.67	55.42 Substituents - 17.13, 17.78	134.52 ¹³ C NM C ₇ 50.32 47.41, 48.06		159.44 TABLE-2 L DATA OF CO Substituted carbon - 126.61, 127.86	134.52 MPOUN C'1 134.81 135.17	ADS VIII-XIV C 46.15, 126.56, 1 46.65, 128.51, 1	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21 29.05, 130.68, 131.87, 136.66, 137.77
VI VII Compd. VIII IX X	177.04 C=O 176.91 176.67 176.56	55.42 Substituents - 17.13, 17.78 21.92	134.52 ¹³ C NM C ₇ 50.32 47.41, 48.06 51.56		159.44 TABLE-2 L DATA OF CO Substituted carbon - 126.61, 127.86 127.99	134.52 MPOUN C'1 134.81 135.17 135.62	A 45.67, 52.12, 1 ADS VIII-XIV C 46.15, 126.56, 1 46.65, 128.51, 1 46.86, 128.05, 1	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21 29.05, 130.68, 131.87, 136.66, 137.77 29.66, 130.78, 137.87
VII Compd. VIII IX X XI	177.04 C=O 176.91 176.56 176.23	55.42 Substituents 17.13, 17.78 21.92 –	134.52 ¹³ C NM C ₇ 50.32 47.41, 48.06 51.56 48.05, 48.43	45.40 IR SPECTRA C ₂ , C ₃ 45.81 44.43, 45.08 45.96 43.07, 43.29	159.44 TABLE-2 L DATA OF CO Substituted carbon - 126.61, 127.86 127.99 127.74, 129.31	134.52 MPOUN C'1 134.81 135.17 135.62 134.81	ADS VIII-XIV ADS VIII-XIV 46.15, 126.56, 1 46.65, 128.51, 1 46.86, 128.05, 1 45.67, 45.51, 13	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21 29.05, 130.68, 131.87, 136.66, 137.77 29.66, 130.78, 137.87 30.02, 130.45, 130.56, 137.98
VII VII Compd. VIII IX X XI XII	177.04 C=O 176.91 176.56 176.23 177.98	55.42 Substituents 	134.52 ¹³ C NM C ₇ 50.32 47.41, 48.06 51.56 48.05, 48.43 5.06	45.40 AR SPECTRA C ₂ , C ₃ 45.81 44.43, 45.08 45.96 43.07, 43.29 45.12	159.44 TABLE-2 L DATA OF CO Substituted carbon - 126.61, 127.86 127.99 127.74, 129.31 129.68	134.52 MPOUN C'1 134.81 135.17 135.62 134.81 134.99	A 45.67, 52.12, 1 ADS VIII-XIV C 46.15, 126.56, 1 46.65, 128.51, 1 46.86, 128.05, 1 45.67, 45.51, 13 45.84, 129.92, 1	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21 29.05, 130.68, 131.87, 136.66, 137.77 29.66, 130.78, 137.87 0.02, 130.45, 130.56, 137.98 30.18, 130.69, 138.24
VI VII Compd. VIII IX X XI XII XIII	177.04 C=O 176.91 176.67 176.56 176.23 177.98 177.11	55.42 Substituents 	134.52 ¹³ C NM C ₇ 50.32 47.41, 48.06 51.56 48.05, 48.43 5.06 48.17, 48.32	$ \begin{array}{r} $	159.44 TABLE-2 L DATA OF CO Substituted carbon - 126.61, 127.86 127.99 127.74, 129.31 129.68 154.23, 154.41	134.52 MPOUN C'1 134.81 4 135.17 4 135.62 4 134.81 4 134.99 4 134.82 4	A 45.67, 52.12, 1 ADS VIII-XIV C 46.15, 126.56, 1 46.65, 128.51, 1 46.86, 128.05, 1 45.67, 45.51, 13 45.84, 129.92, 1 45.84, 113.92, 1	114.36, 124.55, 127.80 Cage + aromatic carbons 26.91, 128.82, 138.21 29.05, 130.68, 131.87, 136.66, 137.77 29.66, 130.78, 137.87 00.02, 130.45, 130.56, 137.98 30.18, 130.69, 138.24 21.32, 124.39, 128.72, 130.23, 137.14

6328 Verma et al.

Asian J. Chem.

resonances show temperature dependence and on raising the temperature coalesce at 145° (DMSO- d_6). Activation energy of the process has been evaluated to be $\Delta G_{\neq} = 22.0$ kcal/mol. Compounds XI and XIII also show duplexed signals for 7-endomethylenic carbon and for 2'-carbon in ¹³C NMR spectrum (Table-2). The duplexity in resonances is attributed to compression effect and suggests two non-planar conformations of the phenyl ring due to slow rotation about N-C bond. In case of *exo* configuration (IX, XI, XIII), ¹H NMR spectroscopy could not provide evidence for the presence of different conformations while ¹³C NMR of these compounds demonstrated the two conformations about N-C bond. The increased value of activation energy in case of compound IX as compared to compound II suggests the role or compression effect of the non-planar cage moiety in controlling the rotation of phenyl of ring about N-C bond.

¹³C NMR spectra of 4'-substituted arylimides (**III**, **V**, **VII**, **X**, **XII** and **XIV**) exhibit normal spectral pattern and suggest a fast rotation of the phenyl ring about N-C bond as observed in unsubstituted arylimides.

ACKNOWLEDGEMENTS

One of the authors (SMV) thanks CSIR, New Delhi for the award of a research fellowship. Thanks are also due to Department of Chemistry, Banaras Hindu University, Varanasi for providing necessary research facilities.

Vol. 20, No. 8 (2008) Potentiality of Steric & Compression Effect in Conformational Analysis 6329

REFERENCES

- 1. S.M. Verma and N.B. Singh, Aust. J. Chem., 29, 295 (1976).
- 2. S.M. Verma and N.B. Singh, Bull. Chem. Soc. (Japan), 57, 520 (1972).
- 3. A. Srivastava, V. Srivastava, S.M. Verma and A.K. Saxena, *Indian J. Chem.*, **40B**, 20 (2001).
- 4. K.K. Srivastava, A.K. Verma and S.M. Verma, *Indian J. Chem.*, **32B**, 1143 (1993).
- 5. K.K. Srivastava, V. Srivastava and S.M. Verma, Indian J. Chem., 38B, 672 (1999).
- 6. N. Srivastava, V. Srivastava and S.M. Verma, Indian J. Chem., 30B, 1080 (1991).
- 7. R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Indentification of Organic Compounds, John Wiley & Sons, New York, edn. 4, p. 158 (1981).
- 8. S. Pausals, J. Tegenfeldt and J.S. Wough, J. Chem. Phys., 61, 1338 (1974).
- 9. J.K. Whitesell and R.S. Mathews, J. Org. Chem., 42, 3878 (1977).
- 10. G. Mehta and A.V. Reddy, Indian J. Chem., 20B, 697 (1981).
- 11. T.H. Fischer, J.C. Crook and S. Chang, Tetrahedron, 43, 2243 (1987).
- 12. R. Roumestand, B. Berly, D. Hosford and P. Braquet, *Tetrahedron*, 45, 1975 (1989).
- 13. A.N. Sayed Abdul and L. Bauer, Tetrahedron Lett., 27, 1003 (1986).
- 14. E. Bareitnaier and W. Voelter, ¹³C NMR Spectroscopy, VCH Publication, edn. 3, p. 115m (1987).
- W.A. Thomas, in ed.: E.F. Mooney, Annual Review of NMR Spectroscopy, Academic Press London, Vol. 1, p. 44 (1968).
- 16. H.S. Gutowsky and C.H. Holm, J. Chem. Phys., 25, 1228 (1956).

(Received: 8 January 2008; Accepted: 14 July 2008) AJC-6686