Asian Journal of Chemistry

Synthesis and Antiinflammatory Activity of 2-[5'-(4-Pyridinyl)-1',2',3'-oxadiazol-2-yl-thiomethyl]-3-substituted-aryl-6-substituted-quinazolin-4-ones

CHATRASAL SINGH RAJPUT, ASHOK KUMAR[†], SUDHIR KUMAR BHATI and JAI SINGH^{*} Department of Chemistry, D.N. (Postgraduate) College, Meerut-250 002, India

In present study, a novel series of quinazolin-4-ones derivatives *viz.*, 2-methyl-3-substituted aryl-6-substituted quinazolin-4-ones (4-18), 2-bromomethyl-3-substitutedaryl-6-substuted quinazolin-4-ones (19-33), 2-[5'-(4-pyridinyl)-1',3',4'-oxadiazol-2'-yl-thiomethyl]-3-substituted aryl-6-substituted quinazolin-4-ones (34-48) have been synthesized. The structures of all these newly synthesized compounds were confirmed by their analytical and spectral data. The compounds were evaluated for their antiinflammatory activity. Compound 43 showed maximum antiinflammatory (36.25 %) activity at the dose of 50 mg/kg p.o.

Key Words: Quinazolin-4-ones, 1',3',4'-Oxadiazoles, Antiin-flammatory activity.

INTRODUCTION

Quinazolinone derivatives have been found to possess potent wide spectrum of activities like antibacterial^{1,2}, anticonvulsant³⁻⁵ and antiinflammatory⁶⁻¹⁰. It is also reported that substitution of halo group at 6th⁸ and 8th⁶ position in this nucleus enhances its antiinflammatory action. A large number of oxadiazoles¹¹⁻¹⁵ are reported to possess potent antiinflammatory activity. This prompted us to syntheses a new series of quinazolinone derivatives by incorporating the oxadiazole moiety at 2nd position of the quinazolinone nucleus. The structures of all compounds have been evaluated by elemental analysis and spectral analysis (IR, ¹H NMR and mass spectrometry). All the compounds have been screened for their antiinflammatory activity.

EXPERIMENTAL

Melting points were taken in open capillary tubes and are uncorrected. Analytical data of C, H, N were with in ± 0.4 % of the theoretical values. IR spectra (cm⁻¹) were recorded on Beckman-Acculab 10 spectrophotometer. ¹H NMR spectra were determined in CHCl₃ on Brucker 300-FT instrument.

[†]Department of Pharmacology, LLRM Medical College, Meerut-250 102, India.

Vol. 20, No. 8 (2008) Synthesis of Substituted-aryl-6-substituted-quinazolin-4-ones 6247

Synthesys of compounds

5-Bromoanthranilic acid and 5-iodoanthranilic acid: These compounds were prepared according to reported methods by Wheeler *et al.*¹⁶ and Klemme *et al.*¹⁷, respectively.

2-Methyl-6-substituted benzoxazin-4-one (1-3): These compounds were synthesized by known method¹⁸.

A mixture of substituted anthranilic acid (0.19 mol) and acetic anhydride (142 mL, 99 %, 1.5 mol) was heated under reflux for 2 h. The excess of acetic anhydride was then distilled off under reduced pressure, on cooling the flask the residue solidified. The benzoxazinone was dissolved in hot dry ethyl acetate and the filtrate was treated with *n*-hexane just to remove turbidity and chilled in a ice bath and was dried *in vacuo* over calcium chloride.

2-Methyl-3-substituted aryl-6-substituted quinazolin-4-ones (4-18): A mixture of **1-3** (0.01 mol) and substituted aniline (0.01 mol) were heated on a free flame for 10-20 min. On cooling a jelly like mass was obtained. The analytical data of the compounds are given in Table-1. Compound **8**: m.p. 97 °C, yield 55 %, m.f. $C_{16}H_{14}N_2O_2$, IR (KBr, v_{max} , cm⁻¹): 1525 (C-N), 1460 (C-C of aromatic ring), 1580 (C=N), 1695 (C=O), 3020 (C-H aromatic), 2810-2930 (aliphatic C-H). ¹H NMR (CDCl₃) δ in ppm : 2.27 (s, 3H, CH₃), 3.41 (s, 3H, OCH₃), 7.26-7.90 (m, 8H, Ar-H): MS: m/z 266 [M]⁺.

2-Bromomethyl-3-substituted aryl-6-substituted quinazolin-4-ones (19-33): Compounds (19-33) were synthesized by adding a solution of bromine (0.02 mol) in acetic acid dropwise with constant stirring in the cold solution of compounds (4-18) (0.01 mol). The reaction mixture was further stirred for 4 h. The solvent was distilled off and the residue thus obtained was washed with petroleum ether (40-60 °C). The analytical data of the compounds are given in Table-1. Compound 23: m.p. 141 °C, yield 55 %, molecular formula $C_{16}H_{13}N_2O_2Br$, IR (KBr, v_{max} , cm⁻¹): 1525 (C-N), 1465 (C-C of aromatic ring), 1580 (C=N), 1695 (C=O), 3025 (C-H aromatic), 765 (C-Br). ¹H NMR (CDCl₃) δ in ppm : 3.40 (s, 3H, OCH₃), 2.89, (s, 2H, CH₂Br), 7.36-8.36 (m, 8H, Ar-H): MS: m/z 345 [M]⁺.

2-[5'-(4-pyridinyl)-1',3',4'-oxadiazol-2'-ylthiomethyl]-3-substituted aryl-6-substituted quinazolin-4-ones (34-48): The solutions of (19-33) (0.03 mol) in pyridine (80 mL) and 5-(4-pyridinyl)-1,3,4-oxadiazole-2-thiol (0.03 mol) were refluxed for 3 h. The contents were then poured onto crushed ice and solid masses were obtained (Scheme-I). The analytical data of the compounds are given in Table-1. Compound **38**: m.p. 163 °C, yield 55 %, m.f. C₂₃H₁₇N₅O₃S. IR (KBr, v_{max} , cm⁻¹): 1180 (C-O-C), 1525 (C-N), 1460 (C-C of aromatic ring), 1575 (C=N), 1690 (C=O), 1640, 1615, 1570, 1415, (ring str. of oxadiazole nucleus), 1065 (C-O str. of oxadiazole nucleus), 1270 (N-N). ¹H NMR (CDCl₃) δ in ppm: 2.75 (s, 2H, CH₂), 3.42 (s, 3H, OCH₃), 8.01-8.70 (4H, pyridinyl ring). 7.26-8.33 (m, 8H, Ar-H): MS: m/z 443 [M]⁺.

Pharmacological evaluation: The experiments were performed with albino rats of the Charles-Foster strain of either sex, excluding pregnant females, of 70 to 95 d weighing 60 to 160 g. Acute toxicity was tested in albino mice (120-125 g). Food (chaw pallet) and water was given to the animals *ad libitum*. The test compounds were dissolved in propylene glycol. Phenylbutazone drug was used as reference drug.

Antiinflammatory activity: Antiinflammatory activity performed by carrageenan-induced paw oedema test in rats was done by following the procedure of Winter *et al.*¹⁹. The rats were divided into three groups (control, drugs treated and standard drugs) of six animals each. A freshly prepared suspension of carrageenan (1 % in 0.9 % saline), 0.05 mL was injected under the planter aponeurosis of the right hind paw of each rat. The compound and standard drug were administered orally to the animals of drug treated groups and the standard drug group, respectively, 1h before the carrageenan injection. The paw volume of each rat was measured before 1 and after 3 h of carrageenan treatment with the help of a plethysmo-meter. The percent antiinflammatory activity was calculated according to the formula given below.

Percentage of inhibition of oedema = $(1-V_t/V_c) \times 100$ where V_t and V_c are paw volume of rats of the treated and control group, respectively. Results obtained were statistically analyzed.

Acute toxity: Approximate lethal dose (ALD₅₀) of all the compounds were investigated by the method of Smith²⁰.

TABLE-1 PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS 4-48									
Compd.	Х	R	m.p. (°C)	Recrystalliation solvent	Yield (%)	m.f.	Found (Calcd.) (%)		
							С	Н	Ν
4	Н	Н	85	Ethanol	70	$C_{15}H_{12}N_2O$	76.40 (76.27)	5.16 (5.08)	11.92 (11.86)
5	Н	2-Cl	83	Methanol	65	$C_{15}H_{11}N_2OCl$	66.78 (66.54)	4.01 (4.07)	10.43 (10.35)
6	Η	4-Cl	86	Ethanol	70	$C_{15}H_{11}N_2OCl$	66.70 (66.54)	4.10 (4.07)	10.46 (10.35)
7	Н	$2-OCH_3$	91	Methanol	85	$C_{16}H_{14}N_2O_2$	72.38 (72.18)	5.34 (5.26)	10.58 (10.53)
8	Н	4-OCH ₃	97	Ethanol	55	$C_{16}H_{14}N_2O_2$	72.41 (72.18)	5.32 (5.26)	10.62 (10.53)
9	6-I	Н	137	Ethanol	50	$C_{15}H_{11}N_2OI$	49.50 (49.72)	3.18 (3.04)	7.96 (7.73)
10	6-I	2-Cl	156	Ethanol	50	$C_{15}H_{10}N_2OCII$	45.54 (45.40)	2.43 (3.52)	7.18 (7.06)
11	6-I	4-Cl	164	Ethanol	68	$C_{15}H_{10}N_2OCII$	45.61 (45.40)	2.61 (2.52)	7.23 (7.06)
12	6-I	$2-OCH_3$	180	Methanol	55	$C_{16}H_{13}N_2O_2I$	49.21 (48.98)	3.28 (3.32)	7.32 (7.14)
13	6-I	$4-OCH_3$	186	Ethanol	65	$C_{16}H_{13}N_2O_2I$	49.18 (48.98)	3.23 (3.32)	7.29 (7.14)
14	6-Br	Н	123	Benzene	56	$C_{15}H_{11}N_2OBr$	57.26 (57.14)	3.23 (3.49)	8.94 (8.89)
15	6-Br	2-Cl	142	Ethanol	45	C ₁₅ H ₁₀ N ₂ OBrCl	51.78 (51.50)	2.69 (2.86)	8.07 (8.01)
16	6-Br	4-Cl	149	DMF/water	55	$C_{15}H_{10}N_2OBrCl$	57.81 (51.50)	2.71 (2.86)	8.05 (8.01)
17	6-Br	$2-OCH_3$	171	Ethanol	60	$C_{16}H_{13}N_2O_2Br$	55.36 (55.56)	5.58 (3.77)	8.32 (8.12)
18	6-Br	$4-OCH_3$	178	DMF	65	$C_{16}H_{13}N_2O_2Br$	55.41 (55.56)	5.54 (3.77)	8.29 (8.12)
19	Η	Н	98	Ethanol	65	$C_{15}H_{11}N_2OBr$	57.42 (57.14)	3.65 (3.49)	9.02 (8.89)
20	Н	2-C1	147	Ethanol	70	$C_{15}H_{10}N_2OBrCl$	51.63 (51.50)	2.72 (2.86)	8.08 (8.01)
21	Н	4-Cl	152	Acetic acid	62	$C_{15}H_{10}N_2OBrCl$	51.65 (51.50)	2.69 (2.86)	8.03 (8.01)
22	Н	$2-OCH_3$	134	Acetone/Pet. Ether	68	$C_{16}H_{13}N_2O_2Br$	55.79 (55.65)	3.82 (3.77)	8.22 (8.12)
23	Н	$4-OCH_3$	141	Ethanol	55	$C_{16}H_{13}N_2O_2Br$	55.81 (55.65)	3.81 (3.77)	8.25 (8.12)
24	6-I	Н	142	Methanol	66	$C_{15}H_{10}N_2OBrI$	40.26 (40.82)	2.19 (2.27)	6.16 (6.35)
25	6-I	2-Cl	163	Methanol	54	C ₁₅ H ₉ N ₂ OBrClI	38.01 (37.85)	2.08 (1.89)	5.67 (5.89)

TABLE-1 PHYSICAL AND ANALYTICAL DATA OF COMPOUNDS 4-48

Compd.	Х	R	m.p. (°C)	Recrystalliation solvent	Yield (%)	m.f.	Found (Calcd.) (%)			625(
							С	Н	Ν) Ra
26	6-I	4-Cl	167	DMF/water	60	C15H9N2OBrClI	37.96 (37.85)	2.10 (1.89)	5.63 (5.89)	ıjpu
27	6-I	$2-OCH_3$	208	Rectified Spirit	65	$C_{16}H_{12}N_2O_2BrI$	41.98 (40.76)	2.88 (2.55)	6.09 (5.94)	t <i>et</i>
28	6-I	$4-OCH_3$	222	Ethanol	50	$C_{16}H_{12}N_2O_2BrI$	41.93 (40.76)	2.79 (2.55)	6.13 (5.94)	al.
29	6-Br	Н	95	Benzene	58	$C_{15}H_{10}N_2OBr_2$	57.33 (57.14)	3.64 (3.49)	9.03 (8.89)	
30	6-Br	2-Cl	148	Methanol	52	$C_{15}H_9N_2OBr_2Cl$	51.68 (51.50)	2.79 (2.86)	8.10 (8.01)	
31	6-Br	4-Cl	155	Ethanol	65	C ₁₅ H ₉ N ₂ OBr ₂ Cl	51.63 (51.50)	2.71 (2.86)	8.07 (8.01)	
32	6-Br	$2-OCH_3$	210	DMF/water	57	$C_{16}H_{12}N_2O_2Br_2$	55.83 (55.56)	3.81 (3.77)	8.24 (8.12)	
33	6-Br	$4-OCH_3$	216	Ethanol	54	$C_{16}H_{12}N_2O_2Br_2$	55.79 (55.56)	3.83 (3.77)	8.21 (8.12)	
34	Н	Н	112	Ethanol	50	$C_{22}H_{15}N_5O_2S$	63.81 (63.92)	3.59 (3.63)	16.99 (16.94)	
35	Н	2-Cl	178	Ethanol	45	$C_{22}H_{14}N_5O_2SC1$	59.08 (58.99)	3.08 (3.13)	15.59 (15.64)	
36	Н	4-Cl	284	Methanol	40	$C_{22}H_{14}N_5O_2SCl$	58.77 (58.99)	3.16 (3.13)	15.57 (15.64)	
37	Н	$2-OCH_3$	155	Benzene	38	$C_{23}H_{17}N_5O_3S$	62.51 (62.30)	3.79 (3.84)	15.83 (15.80)	
38	Н	$4-OCH_3$	163	DMF	55	$C_{23}H_{17}N_5O_3S$	62.44 (62.30)	3.87 (3.84)	15.85 (15.80)	
39	6-I	Н	189	Ethanol	56	$C_{22}H_{14}N_5O_2IS$	48.69 (48.98)	2.64 (2.60)	12.92 (12.99)	
40	6-I	2-Cl	197	Acetic acid	44	$C_{22}H_{13}N_5O_2IClS$	46.18 (46.03)	2.29 (2.27)	12.23 (12.21)	
41	6-I	4-Cl	215	Methanol	51	C ₂₂ H ₁₃ N ₅ O ₂ IClS	46.15 (46.03)	2.25 (2.27)	12.25 (12.21)	
42	6-I	$2-OCH_3$	221	Methanol	52	$C_{23}H_{16}N_5O_3IS$	48.40 (48.51)	2.86 (2.81)	12.33 (12.30)	
43	6-I	$4-OCH_3$	227	Acetone	57	$C_{23}H_{16}N_5O_3IS$	46.48 (48.51)	2.83 (2.81)	12.31 (12.30)	
44	6-Br	Н	135	Ethanol	58	$C_{22}H_{14}N_5O_2BrS$	55.78 (55.66)	2.81 (2.85)	14.19 (14.23)	
45	6-Br	2-Cl	185	Ethanol	49	C ₂₂ H ₁₃ N ₅ O ₂ BrClS	50.05 (50.14)	2.41 (2.47)	13.35 (13.29)	Asi
46	6-Br	4-Cl	198	Benzene	52	C ₂₂ H ₁₃ N ₅ O ₂ BrClS	50.23 (50.14)	2.44 (2.47)	13.35 (13.29)	an.
47	6-Br	$2-OCH_3$	217	DMF	46	$C_{23}H_{16}N_5O_3BrS$	52.85 (52.87)	3.14 (3.06)	13.34 (13.41)	I. C
48	6-Br	4-OCH ₃	223	Acetic acid	50	$C_{23}H_{16}N_5O_3BrS$	52.92 (52.87)	3.12 (3.06)	13.38 (13.41)	hem.

Vol. 20, No. 8 (2008) Synthesis of Substituted-aryl-6-substituted-quinazolin-4-ones 6251

RESULTS AND DISCUSSION

All newly synthesized quinazolinones (19-48) have shown antiinflammatory activity of varying degree from 12.45 to 36.25 % and biological results are given in Table-2. All compounds of this series have been evaluated for their antiinflammatory activity against carrageenan induced rat hind

ANTIINFLAMMATORY ACTIVITY OF TITLED COMPOUNDS (19-48)								
Commd * no	v	D	Dose	%Decrease in paw oedema				
Compu. ¹ no.	Λ	ĸ	mg/kg p.o.	antiinfammatory activity				
19	Н	Н	50	12.45				
20	Н	2-Cl	50	18.79				
21	Н	4-Cl	50	17.55				
22	Н	$2-OCH_3$	50	15.56				
23	Н	$4-OCH_3$	50	14.78				
24	6-I	Н	50	14.50				
25	6-I	2-Cl	50	19.97				
26	6-I	4-Cl	50	18.25				
27	6-I	$2-OCH_3$	50	17.67				
28	6-I	$4-OCH_3$	50	16.88				
29	6-Br	Н	50	16.35				
30	6-Br	2-Cl	50	21.27				
31	6-Br	4-Cl	50	20.57				
32	6-Br	$2-OCH_3$	50	19.48				
33	6-Br	$4-OCH_3$	50	18.75				
34	Н	Н	50	22.25				
35	Н	2-Cl	50	24.72				
36	Н	4-Cl	50	23.25				
37	Н	$2-OCH_3$	50	21.35				
38	Н	$4-OCH_3$	50	20.98				
39	6-I	Н	50	25.23				
40	6-I	2-Cl	50	27.24				
41	6-I	4-Cl	50	26.45				
42	6-I	$2-OCH_3$	50	26.68				
			25	17.20				
43	6-I	$4-OCH_3$	50	36.25				
			100	69.21				
44	6-Br	Н	50	25.67				
45	6-Br	2-C1	50	24.75				
46	6-Br	4-Cl	50	24.95				
47	6-Br	$2-OCH_3$	50	27.33				
48	6-Br	$4-OCH_3$	50	26.59				
			25	18.30				
Phenylbutazone	-	-	50	36.80				
			100	64.50				

TABLE-2 ANTIME AMMATOR ACTIVITY OF TITLED COMPOUNDS (10.48)

_

*ALD₅₀ values of all compounds were found to be >1000 mg/kg p.o.

6252 Rajput et al.

Asian J. Chem.

paw oedema test at a dose of 50 mg/kg per oral. The compounds (**19-33**) have shown modulate antiinflammatory activity (12.45-21.27 %). Further oxadiazole substituted compounds (**34-48**) have shown better antiinflammatory (21.35-36.25 %) activity than compounds (**19-33**) at the dose of 50 mg/kg p.o. Among these, compound **43** have shown most potent activity, which showed 36.25 % inhibition of oedema. This compound elicited almost equal activity like the standard drug phenylbutazone (36.8 % inhibition at 50 mg/kg p.o.). This compound was further screened for antiinflammatory activity at three graded doses that is 25, 50 and 100 mg/kg p.o. Interestingly, this compound showed better antiinflammatory activity than the standard drug at the dose of 100 mg/kg p.o.

REFERENCES

- M.M. Ghorab, S.G. Abdel Hamide and A.E. El-Hakim, *Indian J. Heterocycl. Chem.*, 5, 115 (1995),
- 2. P.N.S. Reddy, T.V. Vasanatha and Ch. N. Raja, Indian J. Chem., 38B, 40 (1999).
- 3. F.W. James, L.R. Terry, E.S. Merk, A.C. James and D.G. Thomas, *J. Med. Chem.*, **33**, 16 (1998).
- 4. Archana, V.K. Srivastava, R. Chandra and A. Kumar, *Indian J. Chem.*, **41B**, 2371 (2002).
- 5. O.A.R. El-Naser and B.S. El-Sayed, Arzeim-Forsch/Drug Res., 44, 915 (1994).
- A. Kumar, S. Sharma, K. Bajaj, D. Bansal, S. Sharma, Archana, K.K. Saxena, S. Lata, B. Gupta and V.K. Srivastava, *Indian J. Chem.*, **42B**, 1979 (2003).
- 7. J. Sarvanana, S. Mohan and K.S. Manjjunatha, *Indian J. Heterocycl. Chem.*, **8**, 55 (1998).
- 8. P. Rani, Archana, V.K. Srivastava and A. Kumar, Indian J. Chem., 41B, 2642 (2002),
- 9. A. Kumar, R.S. Verma, B.P. Jaju and J.N. Sinha, J. Indian Chem. Soc., 69, 920 (1990).
- 10. A. Veerachamy, R. Viswas, M. Ramseshu and V.R. Kona, *Biol. Pharm. Bull.*, **28**, 1091 (2005).
- 11. A. Mohammad, A. Oberoi and A. Shah, Indian J. Chem., 38B, 237 (1999).
- 12. F.A. Omar, N.M. Mohfouz and M.A.D. Rahman, Eur. J. Med. Chem., 31, 819 (1996).
- 13. A.D. Rao, C.R. Shankar, A.B. Rao and V.M. Reddy, Indian J. Chem., 25B, 665 (1986).
- 14. M.S.Y. Khan, G. Chawla and A. Mueed, *Indian J. Chem.*, **43B**, 1302 (2004).
- 15. Y.M.S. Khan and M. Akhtor, Indian J. Chem., 43B, 900 (2003).
- 16. A.A. Wheelar and W.M. Oats, J. Am. Chem. Soc., 32, 770 (1910).
- 17. C.J. Klemme and J.H. Hunter, J. Org. Chem., 5, 227 (1940).
- 18. M.T. Bogert and H.A. Soli, J. Am. Chem. Soc., 29, 517 (1907).
- 19. C.A. Winter, E.A. Risley and G.W. Nuss, Proc. Soc. Exp. Biol. NY, 111, 544 (1962).
- 20. Q.E. Smith, Pharmacological Screening Test Progress in Medicinal Chemistry, Butterworth, London, Vol. 1 (1960).