Asian Journal of Chemistry

Vol. 20, No. 7 (2008), 5791-5793

NOTE

Synthesis and Crystal Structure of One-Dimensional Linear Supramolecular Tetraazamacrocyclic Nickel(II) Complex

JIAN-HONG BI*, HONG XIA[†] AND ZI-XIANG HUANG[‡]

Department of Chemistry, Hefei Teachers College, 327, Jinzhai Street Hefei, Anhui 230061, P.R. China E-mail: hxx010101@126.com

The nickel(II) complex [NiL]·(ClO₄)₂ (L = 5,5,7,12,12, 14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) has been synthesized and its crystal structure was determined by X-ray diffraction. The crystal is monoclinic, space group P2(1)/c, a = 10.2600(8) Å, b = 10.7600(5) Å, c = 10.9000(7) Å, $\alpha = 90^{\circ}$, $\beta = 111.410(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 1120.29(12) Å³, Mr = 538.07, Z = 2, Dc = 1.595 g/cm³, F(1000) = 564, I = 1.155 mm⁻¹. The final R = 0.0336 and wR = 0.0880 for 2517 observed reflections (I > 2 σ (I)). The center nickel(II) ion is coordinated by four N atoms in a little distortion plane square geometry. The compound is in one-dimensional linear supramolecular state.

Key Words: Crystal structure, Tetaraazamacrocycle, Nickel(II) complex, Supramolecular.

Recently, the chemistry of transition metal complexes containing macrocyclic ligand has become increasingly important¹⁻⁷. However, the structurally characterized transition metal complexes containing macrocyclic ligand 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (L), are still very rare. Herein, the synthesis of one-dimensional linear supramolecular tetraazamacrocyclic nickel(II) complex and its crystal structure are reported.

The ligand, 5,5,7,12,12, 14-hexamethyl-1,4,8,11-tetraazacyclotetradeca -4,11-diene (L) was synthesized according to the literature^{8,9}. IR spectra were recorded on a Nexus-870 spectrophotometer. Elemental analyses were performed on a Elemental Vario EL-III elemental analyzer. The crystal structure was determined by Siemens SMART CCD area-detector diffractometer.

Synthesis of [NiL]·(ClO₄)₂: The mixture of ligand (3 mmol) and Ni(ClO₄)₂· $6H_2O$ (3 mmol) in 100 mL methanol solution was refluxed for 1 h

[†]Library, Hefei Teachers College Hefei-230061, P.R. China.

[‡]Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou-350002, P.R. China.

5792 Bi et al.

Asian J. Chem.

at 70 °C. The precipitate is filtered to obtain a clear brownish yellow solution and after standing at 25 °C for three weeks, well-shaped light yellow cube crystals were obtained by slow evaporation. IR(KBr, v_{max} , cm⁻¹): 3170 (N-H); 1660 (C=N); 1100 and 623 (ClO₄⁻⁻). Elemental Anal. of C₁₆H₃₂Cl₂NiN₄O₈ Found (%): C, 35.63; H, 5.95; N, 10.64; Calcd. (%) C, 35.71; H, 5.99; N, 10.41.

Crystal structure determination: The crystal with dimensions of 0.60 mm × 0.60 mm × 0.50 mm was selected for X-ray diffraction study at 293(2) K, with graphite.monochromatic MoK_{α} radiation ($\lambda = 0.71073$ Å). A total of 7757 reflections were collected in the range of 4.02 to 27.48° of which 2517 reflections were unique with R(int) = 0.0104. The structure was solved by direct methods and expanded using Fourier techniques and SHELXS-97 program system¹⁰. The final full-matrix least-squares refinements including 142 parameters for 2517 reflections with I > 2 σ (I) gave R = 0.0336, wR₂ = 0.0880, {w = 1/[s²(F₀²) + (0.0478P)² + 0.7450P], where p = (F₀² + 2F_C²)}, s = 1.066. The maximum peak and the minimum peak was corresponding to 0.381 and -0.337e/Å⁻³ (CCDC: 646130), respectively.

The atomic coordinates and thermal parameters are given in Table-1 and the selected bond lengths and bond angles are in Table-2. The molecular structure of the $[NiL] \cdot (ClO_4)_2$ is shown in Fig. 1, in which the center nickel(II) ion is coordinated by four N atoms of the macrocycle in a little distortion plane square geometry. The molecular packing arrangement in

ATOMIC COORDINATES ($\times 10^4$) AND THERMAL PARAMETERS ($\mathring{A}^2 \times 10^3$)							
Atom	Х	Y	Z	U(eq)			
NI	0	5000	5000	21(1)			
N(1)	1343(1)	4536(1)	4209(1)	25(1)			
N(2)	-1365(2)	4931(1)	3247(1)	27(1)			
C(1)	3401(2)	4714(2)	6189(2)	36(1)			
C(2)	3590(2)	3596(2)	4283(2)	46(1)			
C(3)	2245(3)	2631(2)	5541(2)	44(1)			
C(4)	2632(2)	3850(2)	5056(2)	28(1)			

TABLE-1

TABLE-2BOND DISTANCES (Å) AND ANGLES (°)

Bond	Distance	Angle	(°)	Angle	(°)
NI-N(2)	1.9145(15)	N(2)#1-NI-N(2)	180.00	N(1)-C(4)-C(1)	106.23(14)
NI-N(1)	1.9392(13)	N(2)-Ni-N(1)	85.74(6)	N(1)-C(4)-C(3)	110.78(15)
N(1)-C(5)	1.4800(2)	N(2)#1-NI-N(1)	94.26(6)	C(1)-C(4)-C(3)	111.70(16)
N(2)-C(7)	1.2780(2)	C(5)-N(1)-C(4)	114.11(14)	N(1)-C(4)-C(2)	110.30(14)
C(1)-C(4)	1.5170(3)	C(5)-N(1)-NI	107.88(11)	N(1)-C(5)-C(6)	106.79(16)
C(5)-C(6)	1.4970(3)	C(4)-N(1)-NI	117.53(10)	N(2)-C(6)-C(5)	107.13(16)
CL-O(1)	1.4260(2)	C(7)-N(2)-C(6)	118.89(16)	O(2)-CL-O(3)	107.77(19)

Vol. 20, No. 7 (2008) Synthesis and Crystal Structure of Tetraazamacrocyclic Ni(II) Complex 5793

the unit cell is shown in Fig. 2. The adjacent macrocyclic molecules linked to each other by a positive negative charge interaction between perchlorate anion and [NiL]²⁺ cation, so that the compound is in one-dimensional linear supramolecular state.

Fig. 1. Structure of [NiL]·(ClO₄)₂ (omitted hydrogen atoms)

Fig. 2. Molecular packing diagram of [NiL]·(ClO₄)₂ in the unit cell

ACKNOWLEDGEMENT

This work is financially supported by Nature Science Foundation of Anhui Universities (KJ2008A24ZC).

REFERENCES

- 1. N.F. Curtis, Inorg. Chim. Acta, 317, 27 (2001).
- 2. J.H. Bi, L.T. Kong and Z.X.Huang, Asian J. Chem., 19, 5229 (2007).
- 3. K.L. Zhang, Z. Wang, C.M. Jin and X.Z.You, Transition Met. Chem., 27, 95 (2002).
- 4. J.H. Bi, F.X. Xie, X.D. Zhao and S.S. Ni, Chin. J. Inorg. Chem., 15, 259 (1999).
- 5. N.L. Hu, H.Z. Dong, Z.X. Huang and F.X. Xie, Asian J. Chem., 17, 1276 (2005).
- 6. J.H. Bi, F.H. Yao, Z.X. Huang, H.L. Wang and N.L. Hu, Asian J. Chem., 19, 5360 (2007).
- 7. D.F. Cook, N.F. Curtis, O.P. Gladkikh and D.C. Weatherburn, *Inorg. Chim. Acta*, **355**, 15 (2003).
- 8. J.H. Bi, L.Q. Chen, Z.Q.F.X. Xie, X.D. Zhao, S.S. Ni and J.D. Xu, *Asian J. Chem.*, 14, 1621 (2002).
- 9. J.H. Bi, F.X. Xie, X.D. Zhao, Q. Chen, J.D. Xu and S.S. Ni, *Asian J. Chem.*, **16**, 137 (2004).
- 10. O.H. Hankovszky, K. Hideg, D. Lloyd and H. McNab, J. Chem. Soc., Chem. Commun., 378 (1974).

(Received: 5 January 2008; Accepted: 2 May 2008) AJC-6611