Schiff Base Complexes for Lanthanide(III) Iodides

KISHOR ARORA* and KIRAN BURMAN Department of Chemistry, Government K.R.G. Autonomous Post-Graduate College, Gwalior-474 001, India E-mail: kishorarora@rediffmail.com

Some newly synthesized lanthanide(III) iodide complexes of Schiff bases having general composition LnL_4I_3 (Ln = La, Ce, Pr or Sm and L = 2N-(2-nitrobenzalidene)aminopyridine (2-NBAPy); 2N-(furfural)aminopyridine (FAPy); 2N-(3,4,5trimethoxybenzalidene)aminopyridine (TMBAPY); and 2N-(4-chlorobenzalidene)aminopyridine (*p*-ClBAPy). These compounds were characterized on the basis of elemental analysis, molar conductance, molecular weight and spectral data. Coordination number six has been proposed for metal ion in these complexes.

Key Words: Lanthanide(III) iodide complexes, Schiff bases.

INTRODUCTION

Lanthanide(III) metal ions are appropriate for complex formation because of their size and high formal positive charge and these metal ions generally show coordination number 6 to 10 in their metal complexes¹.

Present communication reports the lanthanide(III) iodide complexes with some Schiff bases ligands *viz.*, 2N-(2-nitrobenzalidene)aminopyridine (2NBAPy), 2N-(furtural)aminopyridine (FAPy), 2N-(3,4,5-trimethoxy benzalidene)aminopyridine (TMBAPy) and 2N-(4-chlorobenzelidene)-aminopyridine (*p*-CIBAPy) (Fig. 1).

2N-(2-Nitro benzalidene)aminopyridine (2-NBAPy) (I)

2N-(Furfural)aminopyridine (FAPy) (II)

5520 Arora et al.

Asian J. Chem.

2N-(3,4,5-Trimethoxy benzalidene)aminopyridine (TMBAPy) (III)

2N-(4-Chloro benzalidene)aminopyridine (p-ClBAPy) (IV)

Fig. 1

EXPERIMENTAL

Lanthanide(III) nitrates were obtained from Rare Earth Products (Ltd.) and lanthanide(III) iodides were prepared from them by treating these nitrate salts with appropriate amount of KI in ethanol².

Ligands were prepared as reported earlier³⁻⁶**:** A solution of distilled aromatic aldehyde (1 mmol) in absolute alcohol (50 mL) was mixed with corresponding amine *i.e.* 2-amino pyridine (1.1 mmol) in the same solvent and the mixture was refluxed for 3-4 h on cooling yellow to brown products were separated out which were than filtered off and recrystallized using the same solvent.

Mass spectral studies of the ligands were done successfully. The molecular in peaks (or parent peak) appear in the mass spectra of these ligands at the same value at which these are expected to come. These appear at m/e 228, 173, 273 and 217 for 2-NBAPy, FAPy, TMBAPy and *p*-ClBAPy, respectively which confirm the molecular weights of the ligands as compared to their formula weights.

Solvents were obtained from various sources such as BDH, E-Merck and SD chemical and before use these were purified by standard methods⁷. All the physicochemical measurements were made as reported earlier⁸⁻¹⁰.

Preparation of complexes: Complexes were prepared by treating corresponding lanthanide(III) iodide (1 mmol) in ethanol with corresponding ligand solution (4.1 mmol) in the same solvent and the resulting mixture was refluxed on the water bath for 0.5 to 1 h (at *ca.* 70-75 °C). On cooling the desired complex formation takes place. The compounds were filtered and collected, washed with solvent and finally with ether and dried *in vacuo* over CaCl₂.

Vol. 20, No. 7 (2008)

RESULTS AND DISCUSSION

The analytical data for these complexes are given in Table-1.

Complexes are stable and can be stored for some period. After a long time period some of these complexes become sticky. The complexes are soluble in common organic solvents. On the basis of conductance and molecular weight data for general composition $[Ln(L_4)I_2]I$ is suggested for these complexes as conductance data support 1:1 electrolytic nature of the complexes showing that one iodide is present outside the coordination sphere. Same observation can be made from the molecular weight data as the ratio of the formula weight to observed molecular weight cryoscopically is *ca*. 0.5 for these complexes.

On the basis of IR spectral studies, it is observed that v(C=N) azomethine group frequency shift towards lower frequency side thereby suggesting that the linkage of ligands to the metal is through (C=N) azomethine nitrogen atom¹¹ (Table-2).

All other peaks as v(C=C) and v(C-N) *i.e.* pyridine ring deformation and breathing bands remains practically unchanged on complex formation. A new band v(Ln-N) appears at *ca*. 522-512 cm⁻¹ in the present complexes v(Ln-I) band is beyond the scope of studies as this band appears usually at ca 200-100 cm⁻¹ in far IR region.

Electronic spectral data of some of the complexes have been performed successfully and the shift of hypersensitive bands has been utilized to calculate the nephelauxatic effect (β) in these complexes. From β values the covalency factor (b¹/₂) Sinha's covalency parameter ($\delta \%$) (metal ligand covalency percentage) and covalency angular overlap parameter (η) have been calculated and are reported in (Table-3). The reported values of these parameters are similar to the previous observations¹².

On the basis of above discussion coordination number six is suggested for the central metal atom, which is supported by conductance, molecular weight and IR spectral data of these complexes. Proposed structure of the complexes is given in Fig. 2.

[Ln = La, Ce, Sm or Pr; L = 2-NBAPy, FAPy, TMBAPy and p-ClBAPy] (CN = 6)

TABLE-1 ANALYTICAL CONDUCTANCE, MOLECULAR WEIGHT AND MAGNETIC MOMENT DATA FOR LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASE LIGANDS									5522 Arc	
Compound	Colour	Yield (%)	Decomp. temp (°C)	Elemental ar	Elemental analysis (%): Found (Calcd.)			Average m.w.	ш (BM)	ra <i>et c</i>
Compound				С	Н	Ν	$cm^2 mol^{-1}$)	(f.w.)	Meff (2011)	al.
[La(2-NBAPy) ₄ I ₂]I	Brownish black	61	159	27.04 (35.9)	2.14 (2.24)	14.19 (10.49)	50.3	612 (1201)	Diamag.	-
[Ce(2-NBAPy) ₄ I ₂]I	Dark brown	60	158	27.20 (35.7)	2.13 (2.24)	13.32 (10.48)	51.9	602 (1202)	2.32	
[Sm(2-BAPy) ₄ I ₂]I	Dark brown	62	162	27.02 (35.6)	2.13 (2.22)	12.32 (10.39)	51.2	610 (1212)	1.60	
$[Pr(2-NBAPy)_4I_2]I$	Dark brown	61	161	28.04 (35.8)	2.14 (2.24)	14.19 (10.48)	52.3	614 (1203)	3.62	
[La(FAPy) ₄ I ₂]I	Blackish brown	63	160	29.02 (34.7)	2.13 (2.31)	11.32 (8.10)	50.3	510 (1036)	Diamag.	
[Ce(FAPy) ₄ I ₂]I	Brown	65	159	28.30 (34.6)	2.12 (2.31)	12.13 (8.10)	51.9	512 (1037)	2.33	
[Sm(FAPy) ₄ I ₂]I	Black	64	158	28.35 (34.3)	2.19 (2.29)	12.32 (8.02)	52.9	514 (1047)	1.63	
[Pr(FAPy) ₄ I ₂]I	Brownish black	63	157	29.35 (34.5)	2.13 (2.31)	13.12 (8.09)	52.3	516 (1038)	3.61	
[La(TMBAPy) ₄ I ₂]I	Yellow	63	155	29.42 (40.4)	3.29 (3.59)	7.38 (6.28)	51.3	642 (1336)	Diamag.	
[Ce(TMBAPy) ₄ I ₂]I	Brown	64	156	46.35 (40.3)	3.59 (3.59)	2.72 (6.27)	52.3	648 (1337)	2.42	
[Sm(TMBAPy) ₄ I ₂]I	Yellow	65	157	30.98 (40.0)	3.53 (3.56)	7.83 (6.23)	51.3	652 (1347)	1.63	
[Pr (TMBAPy) ₄ I ₂]I	Light brown	66	158	33.50 (40.2)	2.39 (3.59)	4.05 (6.27)	50.3	647 (1338)	3.62	
[La(p-ClBAPy) ₄ I ₂]I	Yellow crystalline	67	159	29.60 (36.9)	2.20 (2.30)	8.27 (7.17)	51.4	520 (1170)	Diamag.	A
[Ce(p-ClBAPy) ₄ I ₂]I	Dark brown	68	152	30.90 (36.8)	2.21 (2.30)	9.15 (7.15)	52.4	528 (1171)	2.32	sian
[Sm(p-ClBAPy) ₄ I ₂]I	Yellow	63	151	25.23 (36.6)	2.12 (2.28)	13.13 (7.11)	51.9	522 (1181)	1.60	J. C
[Pr(p-ClBAPy) ₄ I ₂]I	Light yellow	66	153	23.45 (36.7)	1.96 (2.30)	11.93 (7.16)	50.3	524 (1172)	3.61	hem

TABLE-1
ANALYTICAL CONDUCTANCE, MOLECULAR WEIGHT AND MAGNETIC MOMENT DATA FOR
LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASE LIGANDS

Asian J. Chem.

Vol. 20, No. 7 (2008)

TABLE-2 INFRARED ABSORPTION FREQUENCIES (cm⁻¹) OF LANTHANIDE(III) IODIDE COMPLEXES OF SCHIFF BASE LIGANDS

	v(C-N) str	v(C-N)/v(C=C) Pyridine	v(Ln-N)	
Assignment Compound	V(C-N) SII.	ring breathing &	metal ligand	
	(azometime)	deformation	vibration	
2-NBAPy	1600s	1530s	-	
-		1091m		
[La(2-NBAPy) ₄ I ₂]I	1595s	1530sh	512w	
· · · · · · · · · · · · · · · · · · ·		1090w		
[Ce(2-NBAPy) ₄ I ₂]I	1589s	1528s	515w	
• • • • 2-		1090sh		
[Sm(2-NBAPy) ₄ I ₂]I	1590s	1527s	515w	
2		1088w		
[Pr(2-NBAPy) ₄ I ₂]I	1594s	1525sh	512w	
		1085w		
FAPy	1602s	1528s	-	
		1089m		
[La(FAPy) ₄ I ₂]I	1595s	1525sh	515w	
		1090sh		
[Ce(FAPy) ₄ I ₂]I	1599s	1479m	515w	
		1090sh		
$[Sm(FAPy)_4I_2]I$	1583s	1480m	520w	
		1090w		
[Pr(FAPy) ₄ I ₂]I	1590s	1478m	520w	
		1090sh		
TMBAPy	1686s	1503s	-	
		1038m		
[La(TMBAPy) ₄ I ₂]I	1595s	1503sh	512w	
		1040w		
[Ce(TMBAPy) ₄ I ₂]I	1591s	1505sh	515w	
		1464m		
	1.01	1035sh	500	
$[Sm(TMBAPy)_4I_2]I$	1621s	1505sh	520w	
		1462W		
	1(00	1041W	515	
$[Pr(IMBAPy)_4I_2]I$	16228	1465sh	515W	
	1509-	1040SH 1522m		
р-СІВАРУ	13988	1322III 1097m	-	
$\prod_{n \in \mathcal{D}} C(\mathbf{p} \wedge \mathbf{p}_n) \in \mathbf{I}$	1521c	1087III 1525w	51 <i>4</i> m	
$[La(p-CIDAFy)_4I_2]I$	15518	1323w 1482m	514w	
		1088m		
$[C_{e}(n C \mathbf{R} \wedge \mathbf{P}_{V})] $	1586s	1525sh	515w	
$\left[\operatorname{CC}(p\operatorname{-CIDAI} y)_4 \mathbf{I}_2\right]$	15008	13255H 1475w	515W	
		1085sh		
[Sm(n-ClBAPy) I]]	15880	1520ch	512w	
	12005	1220511 1282w	512W	
		1091w		
[Pr(<i>p</i> -ClBAPy) I]]	1581s	1484w	522w	
$(p \in [p + p])_4 \mathbf{i}_2 \mathbf{j}_4$	12015	1090m	522 **	
		1070111		

ELECTRONIC SPECTRAL DATA (cm ⁻¹) AND RELATED BONDING PARAMETERS OF									
LANTHANIDE(III) COMPLEXES OF SCHIFF BASE LIGANDS									
Complex	Lanthanide salt's electronic spectral band (cm ⁻¹)	Complex electronic spectral band (cm ⁻¹)	Energy level	(1-β)	β	b ^{1/2}	δ%	η	
	24900	24570	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.01325	0.98670	0.11510	1.3428	0.006620	
[Sm(2-NBAPy) ₄)I ₂]I	24000	23040	$\rightarrow {}^{6}P_{52}$	0.04000	0.96000	0.20000	4.1660	0.019700	
	21600	21530	$\rightarrow {}^{4}\mathrm{I}_{_{13/2}}$	0.00324	0.99600	0.05690	0.3250	0.001990	
	24900	24700	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.00800	0.99100	0.08940	0.8072	0.004480	
[Sm(FAPy) ₄ I ₂]I	24000	23050	$\rightarrow {}^{6}P_{5/2}$	0.03950	0.96040	0.19870	4.1128	0.019600	
	21600	21550	$\rightarrow {}^{4}I_{13/2}$	0.00231	0.99760	0.04800	0.2315	0.001190	
	24900	24500	${}^{4}\mathrm{H}_{5/2} \rightarrow {}^{4}\mathrm{F}_{9/2}$	0.01405	0.98595	0.11853	1.4250	0.010448	
[Sm(TMBAPy) ₄ I ₂]I	24000	23070	$\rightarrow {}^{6}P_{5/2}$	0.03875	0.96125	0.19685	4.0312	0.019183	
	21600	21520	$\rightarrow {}^{4}I_{13/2}$	0.00370	0.99630	0.06082	0.3713	0.003700	
	24900	24450	${}^{4}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{9/2}$	0.01807	0.98193	0.13442	1.8402	0.008990	
[Sm[p-CIBAPy) ₄ I ₂]I	24000	23150	$\rightarrow {}^{6}\mathrm{P}_{5/2}$	0.03540	0.96460	0.18814	3.6699	0.017540	
- •/+ <u>2</u> -	21600	21530	$\rightarrow {}^{4}I_{13/2}$	0.00324	0.99670	0.05692	0.3250	0.001648	

TABLE-3

5524 Arora et al.

TABLE-4
ANTIFUNGAL ACTIVITIES OF SOME OF THE REPRESENTATIVE COMPLEXES OF LANTHANIDE(III)
METAL IONS WITH SCHIFF BASES LIGANDS

Compound			Aspergilus sp.			Mucor sp.		
compound	Complex	Co	ncentrations (mg/r	nL)	Concentrations (mg/mL)			_ `
110.		10	20	30	10	20	30	1310
Ι	[Sm(TMBAPy) ₄ I ₂]I	-	-	-	3.0	2.5	1.1	
Π	[La(p-ClBAPy) ₄ I ₂]I	0.5*	0.7	0.5*	2.4	2.0	1.0*	
III	[Pr(p-ClBAPy) ₄ I ₂]I	-	-	-	2.4	2.0	1.2	ne
*Minimum v	alue							m.

*Minimum value.

Vol. 20, No. 7 (2008)

Antifungal activities were also performed by some of these complexes on *Aspergilus* sp. and *Mucor* sp. on PDA culture medium using disc method taking solution of complexes in DMF in varied concentrations. Radial growth of fungal colonies are given (Table-4). Antibacterial studies of some of the representative complexes were also performed on *E. coli* sp. on NA culture medium using disc methods Radial growth results are given in Table-5.

TABLE-5
ANTIBACTERIAL ACTIVITIES OF SOME OF THE REPRESENTATIVE
COMPLEXES OF LANTHANIDE(III) METAL IONS WITH
SCHIFF BASES LIGANDS

Compd. no.		E. coli					
	Complex	Concentrations (mg/mL)					
	_	10	20	30			
IV	[Sm(TMBAPy) ₄ I ₂]I	1.0	0.7	0.4			
V	[La(p-ClBAPy) ₄ I ₂]I	0.9	0.7	0.7			
VI	[Pr(p-ClBAPy) ₄ I ₂]I	1.3	1.0	1.1			

REFERENCES

- D.K. Kappikar, P.V. Sinapulliah, L. Ramakrishna and S. Soundrarajan, *Structure Bond*ing, 34, 135 (1978).
- R.K. Agarwal, K. Arora and R.K. Sarin, Synth. React. Inorg. & Met.-Org. Chem., 24, 735 (1994).
- 3. K. Arora, D.P. Sharma and S. Sharma, Asian J. Chem., 11, 1357 (1999).
- 4. K. Arora, R.C. Goyal and S. Sharma, Orient. J. Chem., 15, 367 (1999).
- 5. R.C. Goyal, D.D. Agarwal and K. Arora, Asian J. Chem., 12, 1181 (2000).
- 6. K. Arora, R.C. Goyal and D.D. Agarwal, Orient. J. Chem., 16, 105 (2000).
- 7. D.R. Cousin and F.A. Hart, J. Inorg. Nucl. Chem., 30, 3009 (1968).
- 8. I.M. Kolthoff and P.J. Euring, Treatise on Analytical Chemistry, Part-II, New York, Vol. 8 (1963).
- 9. R.K. Agarwal, A.K. Srivastava and T.N. Srivastava, Transition Met. Chem., 5, 95 (1980).
- 10. A. Gupta, D.D. Agarwal and K. Arora, Asian J. Chem., 16, 552 (2004).
- 11. R.K. Agarwal, K. Arora and P. Dutt, Polyhedron, 13, 957 (1994).
- A. Gupta, Ph.D. Thesis, Spectroscopic and Thermal Studies of Some Lanthanide(III) Complexes of Some Nitrogen Donor Ligands, Jiwaji University, Gwalior, India (2003).

(Received: 25 September 2007; Accepted: 8 May 2008) AJC-6571