Asian Journal of Chemistry

Vol. 20, No. 7 (2008), 5405-5408

Phytochemical Constituents of Root Bark of Alstonia scholaris. R. Br

K. HEMALATHA*, D. SATYANARAYANA and E.V.S. SUBRAHMANYAM Department of Pharmaceutical Chemistry, N.G.S.M. Institute of Pharmaceutical Science Paneer, Deralakatte, Mangalore-574 160, India Fax: (91)(824)2203992; Tel: (91)(824)2203993, 2203991 E-mail: kamurthy_18@yahoo.com; dsatyanarayana@excite.com

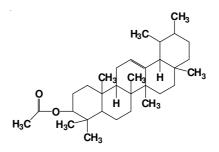
Two triterpenoids α -amyrin acetate and lupeol, and a steroid β -sitosterol have been isolated from the root bark of *Alstonia scholaris* and their structures were established by spectral analysis.

Key Words: *Alstonia scholaris*, Triterpenoids, Steroids, Apocyanaceae.

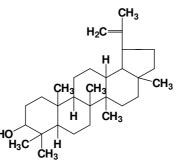
INTRODUCTION

Alstonia scholaris R. Br (Apocyanaceae) commonly known as "Devils tree" or "Dita bark", is a widely distributed in South and Southeast Asia. The bark of this tree is used in traditional medicines throughout the region to treat dysentery and Malaria¹. Alstonia scholaris is known to be rich of alkaloids and there is interest among the scientists to use this for therapeutic purposes, *i.e.* alkaloids stand as a class of major importance of development of new drugs because alkaloids posses a great variety of chemical structures and have been identified as responsible for pharmacological properties of medicinal importance². Almost all the parts of plant (bark, flowers, root, leaves) are found to contain active principles. The species of Alstonia scholaris is used³ in commercial formulation Ayush 64. The new indole alkaloids were isolated from the bark of Alstonia scholaris collected in Timor Indonesia. The structures of all compounds were elucidated by spectroscopic method⁴. Various authors have described in their publications, some of indole alkaloids picrinine⁵, scholarine⁶, scholaricine⁷, new indole alkaloids like alstonamine and strickine⁸ and other several alkaloids from the leaves of Alstonia scholaris in Taiwan, Thailand, Indonesia and Philippines⁹.

In this paper, the isolation and characterization of major triterpenes and sterol from the root bark of *Alstonia scholaris* is reported. 5406 Hemalatha et al.

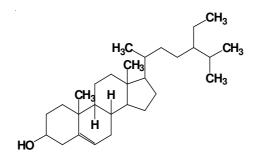

Asian J. Chem.

EXPERIMENTAL


Alstonia scholaris (Apocynaceae) was collected from the medicinal garden of SDM College of Ayurveda, Udupi and authenticated by Dr. T. Sridhar Bairy by comparison with the standard specimens deposited at the Department of Drava Guna, SDM College of Ayurveda, Udupi. Voucher specimen is kept at the NGSM Institute of Pharmaceutical Science, Deralakatte, Mangalore, India.

Extraction and isolation: The air-dried, powdered root bark of Alstonia scholaris was extracted (3 kg) with petroleum ether by cold percolation (8-10 draining were necessary) and this extract was concentrated to remove the solvent. The bright yellowish coloured residue (52 g) was dissolved in 500 mL of ethyl alcohol, boiled for 15 min on water bath, cooled in a refrigerator for 0.5 h. Precipitation of wax took place, it was then filtered and the filtrate was concentrated. The concentrated (30 g) was dissolved in CHCl₃ (20 mL) and chromatographed through a column of Brockmann alumina (diam. $4 \text{ cm} \times \text{length} 32 \text{ cm}$). The column being successively eluted with petroleum ether and benzene. Total 500 fractions of each 10 mL were collected. Fractions of 186-265 eluent gave 2 spots on TLC. These were combined and concentrated to 10 mL when it yielded as white solid. It was separated by preparative TLC using silica gel (petroleum ether:benzene; 8:2) into compound 1 and 2. Pure compound 1 (69 mg) was obtained through recrystaliaztion from petroleum ether. Pure compound 2 (54 mg) was obtained through recrystillization from petroleum ether. Fraction 270-292 gave 1 spot on TLC. These were combined and concentrated (compound 3). The compound 3 (72 mg) was obtained through recrystilazation.

Compound 1 (α-amyrin acetate): Compound 1, (69 mg), crystallized from the mixture of ethanol and ether as a colourless solid; m.p. 244-246 °C shown positive Liberman's Burchards test for triterpenoids. IR (KBr, γ_{max} , cm⁻¹): 2944, 2871 (C-H str. in CH₃ and CH₂), 1715 (ester, C=O str.), 1642 (C=C str.), 1463 (C-H deformation in CH₃) 1380, 1361 (C-H gem dimethyl str.), 1245 (C-O str. in acetate), 1096 (C-O str. in secondary alcohol); EIMS m/z (rel. int., %) m/z 468 [M^+] ($C_{32}H_{52}O_2$); FABMAS (+ve mode) m/z 453 (12), 425 (52), 409 (48), 218 (100), 453 (12), 189 (25), 135 (54), 109 (59), 95 (70); ¹³C NMR (CDCl₃): δ 38.1 (C-1), 27.0 (C-2), 77.3 (C-3), 38.5 (C-4), 55.3 (C-5), 18.2 (C-6), 32.7 (C-7), 39.6 (C-8), 47.7 (C-9), 37.1 (C-10), 23.4 (C-11), 121.2 (C-12), 145.2 (C-13), 41.5 (C-14), 26.2 (C-15), 27.5 (C-16), 32.5 (C-17), 47.3 (C-18), 46.8 (C-19), 29.9 (C-20), 34.8 (C-21), 34.8 (C-21), 37.1 (C-22), 28.3 (C-23), 14.7 (C-24), 15.7 (C-25), 16.9 (C-26), 25.9 (C-27), 28.7 (C-28), 33.2 (C-29), 23.7 (C-30), 170.7 (C=O, s), 21.1 (CH₃-C=O). It was found to be identical with α -amyrin acetate on comparison with authentic sample (mixed. m.p., CO-TLC and Superimposible IR). Vol. 20, No. 7 (2008) Phytochemical Constituents of Root Bark of A. scholaris. R. Br 5407


Compound 2 (Lupeol): Compound **2** (53 mg), crystallized from the mixture of ethanol and ether as a colourless needles; m.p. 215-217 °C shown positive Liberman's Burchards test for triterpenoids. IR (KBr, γ_{max} , cm⁻¹): 3316 (OH *str.*), 2944 (C-H *str.* in CH₃ and CH₂), 1638 (C=CH₂), 1189 (C=C *str.*), 1042 (C-O *str.* in secondary alcohol); EIMS m/z (rel. int., %) 426 [M⁺] (C₃₀H₅₀O) (55), 411 (25), 393 (7), 315 (20), 218 (68), 207 (79), 189 (88), 175 (38), 161 (43), 147 (42), 135 (67), 121 (71), 109 (100), 81 (92), 69 (76); ¹³C NMR (CDCl₃): δ 79.0 (C-1), 41.1 (C-2), 45.3 (C-3), 32.0 (C-4), 47.5 (C-5), 36.1 (C-6), 52.3 (C-7), 41.6 (C-8), 55.3 (C-9), 43.0 (C-10), 40.0 (C-11), 26.2 (C-12), 27. 3 (C-13), 33.3 (C-14), 17.4 (C-15), 35.1 (C-16), 24.1 (C-17), 30.4 (C-18), 28.7 (C-19), 43.5 (C-20), 49.9 (C-21), 20.0 (C-23), 19.3 (C-30), (>C-OH), 21.3 (C-31). It was found to be identical with lupeol on comparison with authentic sample (mixed. m.p., CO-TLC and Superimposible IR).

Compound 3 (β-sitosterol): Compound **3** (64 mg), crystallized from the mixture of ethanol and ether as a colourless crystals; m.p. 137-139 °C shown positive Liberman's Burchards test and Salkowski test for sterols. IR (KBr, γ_{max} , cm⁻¹): 3374 (OH *str.*), 2944, 2871 (C-H stretching in CH₃ and CH₂), 1641 (C=C *str.*), 1381 (C-H deformation in CH₃), 1095 (C=O *str.*), 996 (C-H deformation out of plane); EIMS m/z (rel. int., %) m/z 414 [M⁺] (C₂₉H₅₀O₂); FABMAS (+ve mode) m/z 396 (85), 381 (38), 365 (5), 329 (30), 309 (9), 289 (14), 273 (15), 241 (5), 231 (30), 213(83), 199 (20), 173 (22), 159 (40), 145 (37), 133 (93), 107 (90), 95 (100); ¹³C NMR (CDCl₃): 5408 Hemalatha et al.

Asian J. Chem.

δ 31.0 (C-1), 30.4 (C-2), 37.2(C-3), 46.9 (C-4), 139.6 (C-5), 121.0 (C-6), 31.3 (C-7), 31.8 (C-8), 50.5 (C-9), 36.4 (C-10), 21.3 (C-11), 40.0 (C-12), 42.2 (C-13), 55.3 (C-14), 23.7 (C-15), 28.7 (C-16), 55.3 (C-17), 13.9 (C-18), 19.3 (C-19), 35.6 (C-20), 18.4 (C-21), 34.8 (C-22), 30.0 (C-23), 41.5 (C-24), 33.8 (C-25), 21.5 (C- 26), 22.5 (C-27), 106.0 (C-28), 28.1 (C-29). It was found to be identical with β-sitosterol on comparison with authentic sample (mixed. m. p., CO-TLC and Superimposible IR).

RESULTS AND DISCUSSION

Chromatographic resolution of petroleum ether extract of root bark of *Alstonia scholaris* furnished compound **1**, **2** and **3** which were characterized as α -amyrin acetate, lupeol and β -sitosterol by detailed spectral analysis *i.e.*, IR, ¹³C NMR, FABMAS and direct comparison with authentic samples (m.p. CO-TLC and Superimposable IR). All the above compounds are being reported for the first time from this plant.

REFERENCES

- 1. Versha, G. Gosh, B. Anroop and M. Ramanjit, Indian Drugs, 40, 412 (2003).
- 2. M. Perry and J. Metzger, Medicinal Plants of East and Southeast Asia, MIT Press, Cambridge, MA (1980).
- 3. The Wealth of India, A Dictionary of Raw materials and Industrial Products, CSIR, New Delhi, Vol. 1, p. 50 (1962).
- 4. A.A. Salim, M.J. Garson and D.J. Craik, J. Nat. Prod., 67, 1591 (2004).
- 5. A. Chatterjee, B. Das, A.B. Ray and B. Mukherjee, *Tetrahedron Lett.*, 41, 3633 (1965).
- 6. A. Banerji and K. Siddhanta, *Phytochemistry*, **20**, 540 (1981).
- K.A. Alvi, J. Fatima, M. Ghazala, M. Asif and A. Att-Ur-Rharman, *Phytochemistry*, 24, 2771 (1985).
- 8. K.A. Alvi and A. Att-Ur-Rhaman, Phytochemistry, 26, 2139 (1987).
- 9. T. Yamauchi, F. Abe, R.F. Chen, G.I. Nonaka, T. Santisuk and W.G. Padolina, *Phytochemistry*, **29**, 3547 (1990).