Asian Journal of Chemistry

One-Pot Synthesis of Benzochromene Derivatives Catalyzed by KF-Al₂O₃ with Grinding

TONG-SHOU JIN*, HONG XIE[†], YU-PENG XUE and TONG-SHUANG LI College of Chemistry and Environmental Science, Hebei University Baoding-071002, P.R. China E-mail: jintongshou@yahoo.com.cn

An efficient and convenient approach to the condensation reaction of naphthol, aromatic aldehydes and malono-nitrile using KF-Al₂O₃ as catalyst with grinding at room temperature (without any solvent) is described. This method provides several advantages such as neutral condition, simple work-up procedure, high yields and reduced environmental impact.

Key Words: Benzochromene derivatives, Aromatic aldehydes, Naphthol, Malononitrile, Grinding method.

INTRODUCTION

It is known that substituted benzochromene and their derivatives is a kind of very useful compound¹. They have attracted strong interest² due to their useful biological and pharmacological properties, such as anticoagulant, spasmolytic, diuretic, antianaphylactin, anticancer, etc. In addition, they also constitute a structural unit of a series of natural products³ and they are versatile intermediates in synthesis⁴. Furthermore, these compounds can be employed as cosmetics, pigments⁵ and utilized as potential biodegradable agrochemicals⁶. In several years, many synthetic methods for preparation of these compounds have been reported using base or amide as catalysts⁷. However, each of the above methods has its own merit, while some of these methods have not been entirely satisfactory owing to cumbersome experimental conditions such as requiring an organic solvent, higher temperatures, long reaction times, lower yields and effluent pollution. Consequently, there is scope for further renovation toward mild conditions, increased of variation of the substituents in the components and better yields. The grinding method is used more and more frequently in organic synthesis⁸. Compared with traditional methods, proposed method is more convenient and easily controlled. A great number of organic reactions can be carried

[†]Science and Technique Develop Limited Company, Hebei Gold Rudder, Building Materials, Shijiazhuang-050071, P.R. China.

5146 Jin et al.

out in higher yields, shorter times or milder conditions by the grinding method. It can even set off some reactions that cannot be carried out under traditional conditions. Herein, the condensation of naphthol, aromatic aldehydes and malononitrile using KF-Al₂O₃ as catalyst under solvent-free conditions by the grinding method at room temperature is reported. This is an efficient synthetic method, not only preserves the simplicity and is carried out without any solvent, but also consistently give the corresponding products in good to excellent yields (**Scheme-I**).

Scheme-I

EXPERIMENTAL

¹H NMR spectra were measured on a Bruker Advance (400 MHz) spectrometer using TMS as internal standard and DMSO-*d*₆ as solvent. IR spectra were recorded on a Bio-Rad FTS-40 spectrometer (KBr). Elemental analyses were determined using Perkin-Elmer 2400 II elemental analyzer. All products were characterized by comparison of their melting points, melting points are uncorrected.

Preparation of KF/Al₂O₃: KF/Al₂O₃ was prepared by dissolving 32.5 g of KF·2H₂O in 100 mL water and adding 30 g basic Al₂O₃ (100-200 mesh). The mixture was stirred at 70-75 °C for 2 h. The water was removed under reduced pressure. The resulting free flowing power was dried at 110 °C for 4 h and finally stored in a desiccator until used. The content of KF is about 40 %.

General procedure for synthesis of benzochromene derivatives: Aromatic aldehyde 1 (2 mmol), malononitrile (2) (2 mmol), naphthol (3 or 4) (2 mmol) and KF-Al₂O₃ (200 mg) were added to a mortar. The mixture was ground by mortar and pestle at room temperature for 20 min and was kept at room temperature in a desiccator for a period (16-24 h). The completion of the reaction was monitored by TLC (eluent ethyl acetate-petroleum ether). After completion of the reaction, the mixture was dissolved in ethyl acetate, the catalyst was removed by filtration and washed with ethyl acetate. The majority solvent was evaporated under reduced pressure and the remained solution was poured into H₂O (50 mL). The precipitate was filtered and washed with EtOH, affording the crude product. The crude product was purified by recrystallization from ethanol (95 %) to pure product **5** or **6**. Data of compounds are shown below:

2-Amino-3-cyano-4-phenyl-7,8-benzochromene (5a): IR (KBr, v_{max} , cm⁻¹): 3452, 3308, 3020, 2932, 2205, 1656, 1600, 1572, 1450, 1372, 1267, 1100, 1022, 810, 744. ¹H NMR (DMSO-*d*₆): δ 4.90 (s, 1H, CH), 7.10 (s 2H, NH₂), 7.07-7.12 (m, 5H, ArH), 7.56-7.66 (m, 4H, ArH), 7.94 (d, 1H, *J* = 8.4 Hz, ArH), 8.23 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₄N₂O: C 80.52, H 4.73, N 9.39; found C 80.57, H 4.68, N 9.41.

2-Amino-4-(2-chlorophenyl)-3-cyano-7,8-benzochromene (5b): IR (KBr, v_{max} , cm⁻¹): 3474, 3320, 2918, 2196, 1660, 1594, 1400, 1360, 1272, 1180, 1042, 806, 750. ¹H NMR (DMSO-*d*₆): δ 5.40 (s, 1H, CH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.12 (s, 2H, NH₂), 7.21-7.30 (m, 4H, ArH), 7.54-7.66 (m, 3H, ArH), 7.86 (d, 1H, *J* = 8.4 Hz, ArH), 8.24 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₃ClN₂O: C 72.18, H 3.94, N 8.42; found C 72.15, H 4.01, N 8.45.

2-Amino-4-(4-chlorophenyl)-3-cyano-7,8-benzochromene (5c): IR (KBr, v_{max} , cm⁻¹): 3460, 3324, 2916, 2194, 1668, 1600, 1572, 1490, 1404, 1372, 1274, 1190, 1016, 806, 760. ¹H NMR (DMSO-*d*₆): δ 5.18 (s, 1H, CH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.12 (s, 2H, NH₂), 7.28 (d, 2H, *J* = 8.4 Hz, ArH), 7.54-7.66 (m, 3H, ArH), 7.87 (d, 1H, *J* = 8.4 Hz, ArH), 8.24 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₃ClN₂O: C 72.18, H 3.94, N 8.42; found C 72.22, H 3.91, N 8.51.

2-Amino-4-(2,4-dichlorophenyl)-3-cyano-7,8-benzochromene (5d): IR (KBr, v_{max} , cm⁻¹): 3458, 3330, 2918, 2192, 1664, 1603, 1490, 1374, 1284, 1190, 1048, 960, 810, 760. ¹H NMR (DMSO-*d*₆): δ 5.40 (s, 1H, CH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.21 (s, 2H, NH₂), 7.28-7.32 (m, 2H, ArH), 7.38 (s, 1H, ArH), 7.56-7.68 (m, 3H, ArH), 7.88 (d, 1H, *J* = 8.4 Hz, ArH), 8.24 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₂Cl₂N₂O: C 65.41, H 3.29, N 7.63; found C 65.43, H 3.24, N 7.67.

2-Amino-3-cyano-4-(4-nitrophenyl)-7,8-benzochromene (5e): IR (KBr, v_{max} , cm⁻¹): 3460, 3334, 2196, 1664, 1600, 1576, 1500, 1346, 1270, 1194, 1100, 770. ¹H NMR (DMSO-*d*₆): δ 5.32 (s, 1H, CH), 7.05 (d, 1H, *J* = 8.4 Hz, ArH), 7.28 (s, 2H, NH₂), 7.50-7.72 (m, 3H, ArH), 7.52 (d, 2H, *J* = 8.4 Hz, ArH), 7.90 (d, 1H, *J* = 8.4 Hz, ArH), 8.15 (d, 2H, *J* = 8.4 Hz, ArH), 8.27 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₃N₃O₃: C 69.97, H 3.79, N 12.24; found C 70.04, H 3.82, N 12.29.

5148 Jin et al.

Asian J. Chem.

2-Amino-3-cyano-4-(4-methylphenyl)-7,8-benzochromene (5f): IR (KBr, ν_{max} , cm⁻¹): 3416, 3292, 2915, 2190, 1664, 1580, 1420, 1384, 1276, 1024, 764. ¹H NMR (DMSO-*d*₆): δ 2.24 (s, 3H, CH₃), 4.86 (s, 1H, CH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.06-7.08 (m, 4H, ArH), 7.12 (s, 2H, NH₂), 7.54-7.64 (m, 3H, ArH), 7.94 (d, 1H, ArH), 8.23 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₆N₂O: C 80.75, H 5.16, N 8.97; found C 80.82, H 5.13, N 9.03.

2-Amino-3-cyano-4-(4-methoxyphenyl)-7,8-benzochromene (5g): IR (KBr, ν_{max} , cm⁻¹): 3414, 3316, 2920, 2186, 1658, 1504, 1402, 1374, 1260, 1170, 1024, 804, 760. ¹H NMR (DMSO-*d*₆): δ 3.72 (s, 3H, CH₃O), 4.87 (s, 1H, CH), 6.88-6.94 (m, 4H, ArH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.12 (m, 2H, NH₂), 7.54-7.66 (m, 3H, ArH), 7.88 (d, 1H, *J* = 8.4 Hz, ArH), 8.24 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₆N₂O₂: C 76.81, H 4.91, N 8.53; found C 76.78, H 4.96, N 8.61.

2-Amino-3-cyano-4-(3,4-methylenedioxyphenyl)-7,8-benzochromene (5h): IR (KBr, v_{max} , cm⁻¹): 3428, 3318, 2914, 2194, 1670, 1576, 1490, 1404, 1380, 1256, 1190, 1040, 806, 770. ¹H NMR (DMSO-*d*₆): δ 4.84 (s, 1H, CH), 5.97 (s, 2H, OCH₂O), 6.74-6.84 (m, 3H, ArH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.12 (s, 2H, NH₂), 7.55-7.65 (m, 3H, ArH), 7.88 (d, 1H, *J* = 8.4 Hz, ArH), 8.22 (d, 1H, *J* = 8.4 Hz, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₄N₂O₃: C 73.68, H 4.12, N 8.18; found C 73.65, H 4.17, N 8.27.

2-Amino-3-cyano-4-phenyl-5,6-benzochromene (6i): IR (KBr, v_{max} , cm⁻¹): 3432, 3330, 2185, 1640, 1590, 1518, 1412, 1236, 1186, 1028, 805, 746. ¹H NMR (DMSO-*d*₆): δ 5.21 (s, 1H, CH), 7.02 (s, 2H, NH₂), 7.10-7.20 (m, 3H, ArH), 7.22-7.26 (m, 2H, ArH), 7.32 (d, 1H, *J* = 8.4 Hz, ArH), 7.40-7.46 (m, 2H, ArH), 7.84 (d, 1H, *J* = 8.4 Hz, ArH), 7.90-7.92 (m, 2H, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₄N₂O: C 80.52, H 4.73, N 9.39; found C 80.62, H 4.79, N 9.45.

2-Amino-4-(2-chlorophenyl)-3-cyano-5,6-benzochromene (6j): IR (KBr, v_{max} , cm⁻¹): 3454, 3340, 2186, 1654, 1590, 1518, 1406, 1224, 1092, 1043, 806, 746. ¹H NMR (DMSO-*d*₆): δ 5.42 (s, 1H, CH), 7.02-7.10 (d, 1H, ArH), 7.12 (s, 2H, NH₂), 7.18-7.21 (m, 2H, ArH), 7.34 (d, 1H, *J* = 8.4 Hz, ArH), 7.40-7.50 (m, 3H, ArH), 7.64 (d, 1H, *J* = 8.4 Hz, ArH), 7.92 (d, 1H, *J* = 8.4 Hz, ArH), 7.98 (d, 1H, *J* = 8.4 Hz, ArH). Anal. calcd. (%) for C₂₀H₁₃ClN₂O: C 72.18, H 3.94, N 8.42; found C 72.25, H 3.96, N 8.48.

2-Amino-4-(4-chlorophenyl)-3-cyano-5,6-benzochromene (6k): IR (KBr, v_{max} , cm⁻¹): 3426, 3324, 2194, 1640, 1586, 1408, 1246, 1220, 1100, 1022, 830, 812, 750. ¹H NMR (DMSO-*d*₆): δ 5.36 (s, 1H, CH), 7.08 (s, 2H, NH₂), 7.20 (d, 1H, *J* = 8.4 Hz, ArH), 7.24 (d, 1H, *J* = 8.4 Hz, ArH), 7.32-7.35 (m, 3H, ArH), 7.42-7.47 (m, 2H, ArH), 7.82 (d, 1H, *J* = 8.4 Hz, ArH), 7.90-7.98 (m, 2H, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₃ClN₂O: C 72.18, H 3.94, N 8.42; found C 72.27, H 3.98, N 8.47.

Vol. 20, No. 7 (2008)

2-Amino-4-(2,4-dichlorophenyl)-3-cyano-5,6-benzochromene (6): IR (KBr, v_{max} , cm⁻¹): 3462, 3324, 2198, 1660, 1590, 1516, 1466, 1408, 1238, 1190, 1086, 1046, 846, 806, 748. ¹H NMR (DMSO-*d*₆): d 5.62 (s, 1H, CH), 7.02 (d, 1H, *J* = 8.4 Hz, ArH), 7.12 (s, 2H, NH₂), 7.26-7.36 (m, 2H, ArH), 7.42-7.52 (m, 2H, ArH), 7.56 (d, 1H, *J* = 8.4 Hz, ArH), 7.64 (s, 1H, ArH), 7.92-7.98 (m, 2H, ArH) ppm. Anal. calcd. (%) for C₂₀H₁₂Cl₂N₂O: C 65.41, H 3.29, N 7.63; found C 65.49, H 3.27, N 7.68.

2-Amino-3-cyano-4-(4-methylphenyl)-5,6-benzochromene (6m): IR (KBr, v_{max} , cm⁻¹): 3425, 3348, 2178, 1640, 1589, 1404, 1226, 1076, 830, 750. ¹H NMR (DMSO-*d*₆): δ 2.21 (s, 3H, CH₃), 5.25 (s, 1H, CH), 6.98 (s, 2H, NH₂), 7.06-7.08 (m, 4H, ArH), 7.30 (d, 1H, *J* = 8.4 Hz, ArH), 7.42-7.46 (m, 2H, ArH), 7.82 (d, 1H, *J* = 8.4 Hz, ArH), 7.91-7.94 (m, 2H, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₆N₂O: C 80.75, H 5.16, N 8.97; found C 80.68, H 5.13, N 8.89.

2-Amino-3-cyano-4-(4-methoxyphenyl)-5,6-benzochromene (6n): IR (KBr, v_{max} , cm⁻¹): 3426, 3350, 2192, 1654, 1590, 1516, 1390, 1232, 1184, 1026, 805, 758. ¹H NMR (DMSO-*d*₆): δ 3.68 (s, 3H, OCH₃), 5.24 (s, 1H, CH), 6.86 (d, 2H, J = 8.4 Hz, ArH), 6.94 (s, 2H, NH₂), 7.10 (d, 2H, J = 8.4 Hz, ArH), 7.32 (d, 1H, J = 8.4 Hz, ArH), 7.42-7.44 (m, 2H, ArH), 7.84 (d, 1H, J = 8.4 Hz, ArH), 7.90-7.94 (m, 2H, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₆N₂O₂: C 76.81, H 4.91, N 8.54; found C 76.78, H 5.02, N 8.62.

2-Amino-3-cyano-4-(3,4-methylenedioxyphenyl)-5,6-benzochromene (**60**): (KBr, v_{max} , cm⁻¹): 3434, 3330, 2190, 1654, 1596, 1510, 1482, 1406, 1284, 1080, 1042, 926, 804, 750. ¹H NMR (DMSO-*d*₆): δ 5.24 (s, 1H, CH), 5.92 (s, 2H, OCH₂O), 6.76 (m, 2H, ArH), 6.82 (d, 1H, *J* = 8.4 Hz, ArH), 7.02 (s, 2H, NH₂), 7.32 (d, 1H, *J* = 8.4 Hz, ArH), 7.40-7.48 (m, 2H, ArH), 7.86-7.94 (m, 3H, ArH) ppm. Anal. calcd. (%) for C₂₁H₁₄N₂O₃: C 73.68, H 4.12, N 8.18; found C 73.71, H 4.17, N 8.26.

RESULTS AND DISCUSSION

The aromatic aldehyde (1), malononitrile (2) and naphthol (3 or 4) were ground by mortar and pestle catalyzed by KF-Al₂O₃ without solvent at room temperature for 20 min and was kept at room temperature in a desiccator. The reaction mixture was extracted with ethyl acetate. The majority solvent was evaporated under reduced pressure after and the remained solution was poured into H₂O and get the crude product. The crude product was purified by recrystallization by ethanol, the product **5** or **6** was obtained. The results are summarized in Table-1.

To study the generality of this process, several examples illustrating this method for the synthesis of benzochromene derivatives were studied. The effect of electron deficiency and the nature of substituents on the aromatic ring did not show strongly obvious effect in terms of yields under this 5150 Jin et al.

Asian J. Chem.

try	Δ	Naphthal	Lay away	Product	Yield (%)*	m.p. (°C)	
En	741	Naphtiloi	time (h)			Found	Reported ⁹
1	C ₆ H ₅ 1a	1-Naphthol	18	5a	86	216-218	218-219
2	2-ClC ₆ H ₄ 1b	1-Naphthol	18	5b	89	248-250	251-253
3	$4-\text{ClC}_6\text{H}_4$ 1c	1-Naphthol	16	5c	90	238-240	243-244
4	2,4-Cl ₂ C ₆ H ₃ 1d	1-Naphthol	16	5d	92	218-220	221-223
5	$4-NO_2C_6H_4$ 1e	1-Naphthol	16	5e	94	236-238	239-241
6	$4-CH_3C_6H_4$ 1f	1-Naphthol	22	5 f	86	198-200	205-206
7	$4-CH_3OC_6H_4$ 1g	1-Naphthol	22	5g	85	192-195	195-197
8	3,4-OCH ₂ OC ₆ H ₃ 1h	1-Naphthol	20	5h	87	248-250	252-254
9	C_6H_5 1i	2-Naphthol	24	6i	76	284-286	288-289
10	$2-\text{ClC}_6\text{H}_4$ 1j	2-Naphthol	24	6j	83	270-272	273-274
11	$4-ClC_6H_4$ 1k	2-Naphthol	24	6k	84	222-224	224-226
12	2,4-Cl ₂ C ₆ H ₃ 11	2-Naphthol	24	61	86	255-257	258-260
13	$4-CH_3C_6H_4$ 1m	2-Naphthol	24	6m	74	266-268	270-272
14	4-CH ₃ OC ₆ H ₄ 1n	2-Naphthol	24	6n	73	196-198	200-202
15	3,4-OCH ₂ OC ₆ H ₂ 10	2-Naphthol	24	60	78	272-274	276-277

TABLE-1 SYNTHESIS OF BENZOCHROMENE DERIVATIVES CATALYZED BY KF-AL₂O₃ WITH GRINDING METHOD

*Yields refer to isolated products.

reaction conditions. The three-component cyclocondensation reaction proceeded smoothly under this condition to give the corresponding product 5or 6 in higher yields. Benzaldehyde and other aromatic aldehydes containing electron-withdrawing groups (such as nitro group, halide) or electrondonating groups (such as methyl, methoxy and methylenedioxy) were employed and reacted well to give the corresponding benzochromene derivatives in good to excellent yields.

The reaction of 1-naphthol or 2-naphthol with an aromatic aldehyde and malononitrile gave different experimental results. For example, 4-chlorobenzaldehyde reacted with malononitrile and 1-naphthol or 2-naphthol with grinding method to give the corresponding compounds 5c (90 %) and 6k(84 %), respectively. When 4-methoxybenzaldehyde was treated with malononitrile and 1-naphthol or 2-naphthol under the same conditions, the isolated yield of corresponding compounds were 5g (85 %) and 6n (73 %). It is concluded that 1-naphthol exhibits higher reactivity than 2-naphthol.

The possible following mechanism is proposed to account for the reaction⁹. Firstly aromatic aldehyde **1** was condensed with 1-naphthol **3** to afford the intermediate **10** (**1** + **3** \rightarrow **7** \rightarrow **8** \rightarrow **9** \rightarrow **10**). Then the intermediate **10** reacted with malononitrile **2** *via* Michael addition reaction to give addition product **11**. After that the intermediate **11** was cyclized by the nucleophilic attack of OH group on the cyano (CN) moiety and gave the intermediate

Vol. 20, No. 7 (2008)

13 (11 \rightarrow 12 \rightarrow 13). Finally the expected product 5 was afforded by isomerization (13 \rightarrow 5) (Scheme-II).

Scheme-II

In conclusion, a general and highly efficient procedure for the preparation of benzochromene derivatives catalyzed by KF-Al₂O₃ with grinding method is described. In addition, it is possible to apply the tenets of green chemistry to the generation of biologically interesting products with grinding method which are less expensive and less toxic than those with organic solvents. Moreover, the procedure offers several advantages including high yields, operational simplicity, cleaner reactions, minimal environmental impact which makes it a useful and attractive process for the synthesis of these compounds.

ACKNOWLEDGEMENTS

This project was supported by the National Natural Science Foundation of China, Educational Ministry of China, Educational Department of Hebei Province, Science and Technology Commission of Hebei Province.

REFERENCES

- (a) E.S.H.E. Ashry, L.F. Awada, E.S.I. Ibrahim and O.K. Bdeewy, *Arkivoc.*, 178 (2006);
 (b) T.S. Jin, A.Q. Wang, F. Shi, L.S. Han, L.B. Liu and T.S. Li, *Arkivoc.*, 78 (2006).
- (a) W.O. Foye, Prinicipi di Chimica Farmaceutica Piccin, Padova, Italy, p. 416 (1991);
 (b) L. Bonsignore, G. Loy, D. Secci and A. Calignano, *Eur. J. Med. Chem.*, 28, 517 (1993);
 (c) J. Bloxhem, C.P. Dell and C.W. Smith, *Heterocycles*, 38, 399 (1994);
 (d) G.A.M. Nawwar, F.M. Abdelrazek and R.H. Swcllam, *Arch. Pharm.*, 342, 875 (1991).

(e) J. Zamocka, E. Misikova and J. Durinda, *Pharmazie*, **46**, 610 (1991); (f) E.C. Witte, P. Neubert and A. Roesoh, DE 3427985 (1986); *Chem. Abstr.*, **104**, 224915f (1986); (g) T. Hyama and H. Saimoto, JP 62181276 (1987); *Chem. Abstr.*, **108**, 37645p (1988).

- 3. (a) G.M. Cingolant and M. Pigini, *J. Med. Chem.*, **12**, 531 (1969); (b) C.N. O'Callaghan and T.B.H. McMurry, *J. Chem. Res*(*S*)., 214 (1995).
- (a) A.Z. Sayed, N.A. El-Hady and A.E. El-Agrody, J. Chem. Res(S)., 164 (2000); (b)
 S. Hatakeyama, N. Ochi, H. Numata and S. Takano, J. Chem. Soc. Chem. Commun., 1202 (1988).
- 5. G.P. Ellis, A. Weissberger and E.C. Taylor, The Chemistry of Heterocyclic Compounds, In Chromenes, Chromanes and Chromeones, Wiley, New York, p. 13 (1977).
- (a) E.A. Hafez, M.H. Elnagdi, A.G.A. Elagamey and F.M.A.A. El-Taweel, *Heterocycles*, 26, 903 (1987); (b) F.M. Abdel-Galil, B.Y. Riad, S.M. Sherif, M.H. Elnagdi, *Chem. Lett.*, 1123 (1982).
- (a) F.F. Abdel-Larif, *Indian J. Chem.*, **29B**, 664 (1990); (b) A.G.A. Elagamey and F.M.A.A. El-Taweel, *Indian J. Chem.*, **29B**, 885 (1990); (c) A.G.A. Elagamey, S.Z. Sawllim, F.M.A.A. El-Taweel and M.H. Elnagdi, *Collect. Czech. Chem. Commun.*, **53**, 1534 (1988); (d) R. Ballini, G. Bosica, M.L. Conforti, R. Maggi, A. Mazzacani, P. Righi and G. Sartori, *Tetrahedron*, **57**, 1395 (2001).
- (a) K. Tanaka and F. Toda, *Chem. Rev.*, **100**, 1025 (2000); (b) Z.J. Ren, W.G. Cao and W.Q. Tong, *Synth. Commun.*, **32**, 3475 (2002); (c) F. Toda, H. Takumi and H. Yamaguchi, *Chem. Express*, **4**, 507 (1989); (d) K. Tanaka, S. Kishigami and F. Toda, *J. Org. Chem.*, **56**, 4333 (1991); (e) F. Toda, K. Tanaka and K. Hamai, *J. Chem. Soc. Perkin Trans.*, 3207 (1990); (f) F. Toda, T. Suzuki and S. Higa, *J. Chem. Soc. Perkin Trans.*, 3251 (1998); (g) F. Toda, K. Kiyoshige and M. Yagi, *Angew. Chem. Int. Ed. Engl.*, **28**, 320 (1989); (h) T. Schemyers, F. Toda, J. Boy and G. Kaupp, *J. Chem. Soc. Perkin Trans.*, 989 (1998); (i) H. Hagiwara, S. Obtrubo and M. Kato, *Mol. Cryst. Liq. Cryst.*, **279**, 291 (1996); (j) M. Tanaka and K. Kobayashi, *J. Chem. Soc. Chem. Commun.*, 1965 (1998); (k) J. Im, J. Kim, S. Kim, B. Hahu and F. Toda, *Tetrahedron Lett.*, **38**, 451 (1997).
- (a) D.Q. Shi, S. Zhang, Q.Y. Zhuang, X.S. Wang, S.J. Tu, H.W. Hu, *Chin. J. Org. Chem.*, 23, 1419 (2003); (b) D.Q. Shi, S. Zhang, Q.Y. Zhuang, S.J. Tu and H.W. Hu, *Chin. J. Org. Chem.*, 23, 809 (2003); (c) T.S. Jin, J.C. Xiao, S.J. Wang and T.S. Li, *Ultrason. Sonochem.*, 11, 393 (2004).

(Received: 24 May 2007; Accepted: 9 April 2008) AJC-6512