Asian Journal of Chemistry

Vol. 20, No. 5 (2008), 3579-3584

Synthesis and Characterization of α-(Arylaminothiocarbonyloxy)hydrocarbylphosphonates

JIANPING LI*, JUNGE ZHU and RUIJIE LIU

College of Chemical and Environmental Science, The Key Laboratory of Environmental Pollution Control Technology of Henan Province, Henan Normal University Xinxiang, 453007, P.R. China E-mail: jplig@163.com

> In this study, twelve new α -(arylamino thiocarbonyloxy)hydrocarbylphosphonates were synthesized in excellent yields by addition reaction of α -hydroxyhydrocarbylphosphonates with aryl isothiocyanates in the presence of sodium methoxide. Their structures have been confirmed by IR, ¹H NMR and elemental analysis.

> Key Words: Synthesis, Phosphonates, Arylisothiocyanates, α -Hydroxyhydrocarbylphosphonates.

INTRODUCTION

Phosphonates constitute an important class of organophosphorus compounds and are useful in many applications from organic synthesis to agriculture applications as pesticides and plant growth regulating reagents, besides, α -hydroxy phosphonates can be converted into other α -substution phosphonate^{1,2}. In the last decade, the research on phosphonates mainly focused on six structure types^{3,4} of which α -oxohydrocarbyl phosphonate was a typical one^{5,6}. Furthermore, α -hydroxy alkyl phosphonates have become increasingly important for their biological activity⁷⁻⁹. They are also convenient intermediates in the synthesis of other substituted phosphonates^{10,11}. Based on the research of the predecessors¹²⁻¹⁵, we designed and synthesized a new series of α -(arylaminothiocarbonyloxy) hydrocarbylphosphonates. The structures were confirmed by IR, ¹H NMR and elemental analysis.

EXPERIMENTAL

Melting points were uncorrected. IR spectra were recorded on a FTS-40 spectrophotometer in KBr. ¹H NMR were measured on a Bruker DPX-400 spectrometer using TMS as internal standard and CDCl₃ as solvent. Elemental analyses were performed on PE-2400 CHN elemental analyzer. 3580 Li et al.

Asian J. Chem.

General procedure for 2a-2j (Scheme-I):

As shown in **Scheme-I**, the 1,2-dichloroethane solution of 4-chlorophenylisothiocyanate (0.438 g, 2.5 mmol) was slowly added to a solution of diethyl α -(hydroxyl)- α -(phenyl)methylphosphonate (0.61 g, 2.5 mmol) and sodium methoxide (0.02 g, 0.37 mmol) in 1,2-dichloroethane (10 mL). The mixture was kept for 0.5 h at room temperature with stirring and the reaction degree was monitored by TLC, then was dried with anhydrous sodium sulfate, the solvent was distilled under reduced pressure and the crude product was easily obtained. The purity of the crude product was detected by TLC and separated on silica gel. Diethyl α -(4-chlorophenyl-aminothiocarbonyloxy)- α -(phenyl)methylphosphonate **2a** was obtained and the yield was 90 % (Table-1).

Products	R	Ar	Х	Reaction time (h)	Yield (%)	m.p. (°C)
2a	Et	C_6H_5	Cl	0.5	90	127-129
2b	Me	C_6H_5	Cl	3.0	78	120-121
2c	<i>i</i> -Pr	C_6H_5	Cl	0.5	88	124-126
2d	Et	$4-ClC_6H_4$	Cl	2.0	83	134-136
2e	Me	$4-ClC_6H_4$	EtO	3.5	75	131-133
2f	Et	C_6H_5	EtO	0.5	85	91-93
2g	Me	C_6H_5	EtO	1.0	80	140-141
2h	<i>i</i> -Pr	$4-ClC_6H_4$	EtO	1.5	85	117-119
2i	Et	$4-ClC_6H_4$	Br	2.5	85	127-130
2ј	Me	$4-ClC_6H_4$	Br	1.5	75	126-127

TABLE-1 REACTION TIME, YIELD AND m.p. OF COMPOUNDS 2a-2j

RESULTS AND DISCUSSION

 α -Hydroxyhydrocarbylphosphonate **1** was prepared by the reaction of equimolar amounts of aldehyde and phosphate¹⁶⁻¹⁸. Neutral alumina and potassium fluoride (no dehydration is necessary) were used to facilitate

Vol. 20, No. 5 (2008) α-(Arylaminothiocarbonyloxy)hydrocarbylphosphonates 3581

the reaction¹⁹. The reaction proceeded on the surface of the catalyst (the mixture of alumina and potassium fluoride) at room temperature. This method had a fast reaction rate, was easy to manipulate and gave high yields with no noticeable side reactions. In the preparation of **2**, the catalyst appeared to play a major role. In absence of sodium methoxide, there is almost no reaction. against yields of 75-90 % in the presence of the catalyst. Aryl isothiocyanate is easily obtained through proper preparation methods^{20,21} and has important use in synthesis²². Furthermore, due to the thermal instability of arylisothiocyanate, a trimerization reaction occurred if the reaction was heated. This polymerization reactions was extraordinary rapid and the trimer was isolated as a light yellow resinoid¹². As shown in **Scheme-II**.

To avoid the trimerization reaction, the sodium methoxide and α -hydroxyhydrocarbylphosphonate were mixed in the solvent (1,2-dichloro-ethane) at room temperature. Arylisothiocyanate was then slowly added to the mixture for reducing the side reaction.

All compounds **2a-2j** exhibit characteristic IR absorptions for N-H, P=O and C=S groups. In the ¹H NMR spectra, the protons on the benzene ring appear at 7.20 to 7.60 ppm. Because the hydrogen on the α -carbon (**2a-2j**, the α -carbon is chiral and is pointed out with an asterisk) is coupled to phosphorus atom, it shows up as a doublet and the coupling constant and chemical shift are respectively 6.85 ppm and 13.0 Hz. In the elemental analysis, all the results are consistent with the theoretical values.

Diethyl-α-(4-chlorophenylaminothiocarbonyloxy)-α-(phenyl)methylphosphonate (2a): White crystal, IR (KBr, v_{max} , cm⁻¹): 3169 (N-H), 1597, 1540, 1243 (P=O), 1136 (C=S), 1052 (C-O-C), 743 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 9.70 (s, 1H, NH), 7.45 (m, 5H, -C₆H₅), 7.30 (m, 4H, -C₆H₄), 6.93 (d, 1H, ²*J*_{PCH} = 13.6 Hz, PCH), 4.00 (q, 4H, ³*J* = 7.6Hz, 2 × OCH₂), 1.20 (t, 6H, ³*J* = 7.6 Hz, 2 × CH₃). Anal calcd. for C₁₈H₂₁NO₄PSCI: C, 52.24; H, 5.11; N, 3.38. Found: C, 52.01; H, 4.88; N, 3.14.

Dimethyl-α-(4-chlorophenylaminothiocarbonyloxy)-α-(phenyl)methylphosphonate (2b): Faint yellow crystal, IR (KBr, v_{max} , cm⁻¹): 3168 (N-H), 1596, 1541, 1251 (P=O), 1134 (C=S), 1042 (C-O-C), 769 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 9.65 (s, 1H, NH), 7.40 (m, 5H, -C₆H₅), 7.31 (m, 4H, -C₆H₄), 6.93 (d, 1H, ${}^{2}J_{PCH}$ = 13.6 Hz, PCH), 3.50 (s, 6H, 2 × OCH₃). Anal calcd. for C₁₆H₁₇NO₄PSCI: C, 49.81; H, 4.44; N, 3.63. Found: C, 50.14; H, 4.21; N, 3.53.

Diisopropyl-α-(4-chlorophenylaminothiocarbonyloxy)-α-(phenyl)methylphosphonate (2c): White crystal, IR (KBr, v_{max} , cm⁻¹): 3169 (N-H), 1598, 1542, 1243 (P=O), 1136 (C=S), 1052 (C-O-C), 743 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 9.15 (s, 1H, NH), 7.55 (m, 5H, -C₆H₅), 7.30 (m, 4H, -C₆H₄), 6.92 (d, 1H, ²*J*_{PCH} = 14.0 Hz, PCH), 4.57 (m, 2H, ³*J* = 5.6 Hz, 2 × OCH), 1.25 (d, 12H, ³*J* = 5.6 Hz, 4 × CH₃). Anal calcd. for C₂₀H₂₅NO₄PSCI: C, 54.33; H, 5.70; N, 3.17. Found: C, 54.24; H, 5.93; N, 2.89.

Diethyl-α-(4-chlorophenyl)-α-(4-chlorophenylaminothiocarbonyloxy)methylphosphonate (2d): White crystal, IR (KBr, ν_{max} , cm⁻¹): 3172 (N-H), 1598, 1544, 1232 (P=O), 1135 (C=S), 1041 (C-O-C), 767 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 8.70 (s, 1H, NH), 7.41 (m, 4H, -C₆H₄), 7.33 (m, 4H, -C₆H₄), 6.84 (d, 1H, ²*J*_{PCH} = 14.0 Hz, PCH), 4.04 (q, 4H, ³*J* = 6.8 Hz, 2 × OCH₂), 1.27 (t, 6H, ³*J* = 6.8 Hz, 2 × CH₃). Anal calcd. for C₁₈H₂₀NO₄PSCl₂: C, 48.22; H, 4.50; N, 3.12. Found: C, 48.40; H, 4.76; N, 2.86.

Dimethyl-α-(4-chlorophenyl)-α-(4-ethoxyphenylaminothiocarbonyloxy)methylphosphonate (2e): Faint yellow crystal. IR (KBr, v_{max} , cm⁻¹): 3172 (N-H), 1585, 1541, 1247 (P=O), 1135 (C=S), 1055 (C-O-C), 773 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 8.37 (s, 1H, NH), 7.34 (m, 4H, -C₆H₄), 7.27 (m, 4H, -C₆H₄), 6.96 (d, 1H, ²*J*_{PCH} = 12.4 Hz, PCH), 4.00 (q, 2H, ³*J* = 5.6 Hz, OCH₂), 1.40 (t, 3H, ³*J* = 5.6 Hz, CH₃), 3.70 (s, 6H, 2 × OCH₃). Anal calcd. for C₁₈H₂₁NO₅PSCl: C, 50.28; H, 4.92; N, 3.26. Found: C, 50.01; H, 4.64; N, 3.44.

Diethyl-α-(4-ethoxyphenylaminothiocarbonyloxy)-α-(phenyl)methylphosphonate (2f): Faint yellow crystal, IR (KBr, v_{max} , cm⁻¹): 3156 (N-H), 1591, 1537, 1263 (P=O), 1138 (C=S), 1044 (C-O-C), 738 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 8.75 (s, 1H, NH), 7.30 (m, 5H, -C₆H₅), 7.50 (m, 4H, -C₆H₄), 6.88 (d, 1H, ²*J*_{PCH} = 9.2 Hz, PCH), 4.00 (q, 4H, ³*J* = 6.8 Hz, 3 × OCH₂), 1.30 (t, 9H, ³*J* = 6.8Hz, 3 × CH₃). Anal. calcd. for C₂₀H₂₆NO₅PS: C, 56.73; H, 6.19; N, 3.31. Found: C, 56.45, H, 5.92; N, 3.11.

Dimethyl-α-(4-ethoxyphenylaminothiocarbonyloxy)-α-(phenyl)methylphosphonate (2g): Faint yellow crystal, IR (KBr, v_{max} , cm⁻¹): 3175 (N-H), 1610, 1538, 1246 (P=O), 1124 (C=S), 1053 (C-O-C), 740 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 9.25 (s, 1H, NH), 7.35 (m, 5H, -C₆H₅), 6.96 (d, 1H, ²*J*_{PCH} = 12.4 Hz, PCH), 6.85 (m, 4H, -C₆H₄), 4.40 (q, 2H, ³*J* = 6.0 Hz, OCH₂), 3.65 (s, 6H, OCH₃), 1.27 (t, 2H, ³*J* = 6.0 Hz, CH₃); Anal. calcd. for C₁₈H₂₂NO₅PS: C, 54.68; H, 5.60; N, 3.54. Found: C, 54.39; H, 5.34; N, 3.71.

Vol. 20, No. 5 (2008) α-(Arylaminothiocarbonyloxy)hydrocarbylphosphonates 3583

Diisopropyl-α-(4-chlorophenyl)-α-(4-ethoxyphenylaminothiocarbonyloxy)methylphosphonate (2h): White crystal. IR (KBr, v_{max} , cm⁻¹): 3182 (N-H), 1602, 1543, 1230 (P=O), 1126 (C=S), 1013 (C-O-C), 766 (P-O). ¹H NMR (400 MHz, CDCl₃) δ: 8.75 (s, 1H, NH), 7.50 (m, 4H, -C₆H₄), 7.36 (m, 4H, -C₆H₄), 6.70 (d, 1H, ²*J*_{PCH} = 13.6 Hz, PCH), 4.57 (m, 2H, ³*J* = 6.4 Hz, 2 × CH), 4.00 (q, 2H, ³*J* = 6.8 Hz, OCH₂), 1.27 (t, 3H, ³*J* = 6.8 Hz, CH₃), 1.15 (d, 12H, ³*J* = 6.4 Hz, 4 × CH₃). Anal calcd. for C₂₂H₂₉NO₅PSCI: C, 54.38; H, 6.01; N, 2.88. Found: C, 54.50; H, 5.73; N, 2.59.

Diethyl-α-(4-bromophenylaminothiocarbonyloxy)-α-(4-chlorophenyl)methylphosphonate (2i): White crystal, IR (KBr, v_{max} , cm⁻¹): 3168 (N-H), 1597, 1542, 1232 (P=O), 1135 (C=S), 1017 (C-O-C), 767 (P-O); ¹H NMR (400 MHz, CDCl₃) δ: 9.10 (s, 1H, NH), 7.45 (m, 4H, -C₆H₄, ³*J* = 7.6 Hz), 7.30 (m, 4H, -C₆H₄, ³*J* = 8.0 Hz), 6.87 (d, 1H, ²*J*_{PCH} = 14.0 Hz, PCH), 4.05 (q, 4H, ³*J* = 4.0Hz, 2 × OCH₂), 1.25 (t, 6H, ³*J* = 4.0 Hz, 2 × CH₃); Anal Calcd. for C₁₈H₂₀NO₄PSBrCl: C, 43.87; H, 4.10; N, 2.84; Found: C, 43.64; H, 4.25; N, 2.99.

Dimethyl-α-(4-bromophenylaminothiocarbonyloxy)-α-(4-chlorophenyl)methylphosphonate (2j): Faint yellow crystal; IR (KBr, v_{max} , cm⁻¹): 3180 (N-H), 1595, 1545, 1251 (P=O), 1130 (C=S), 1043 (C-O-C), 763 (P-O); ¹H NMR (400MHz, CDCl₃) δ: 8.60 (s, 1H, NH), 7.43 (m, 4H, -C₆H₄, ³*J* = 8.8 Hz), 7.32 (m, 4H, -C₆H₄, ³*J* = 7.6 Hz), 6.96 (d, 1H, ²*J*_{PCH} = 12.4 Hz, PCH), 3.70 (s, 6H, 2 × OCH₃); Anal Calcd. for C₁₆H₁₆NO₄PSBrCl: C, 41.35; H, 3.47; N, 3.01; Found: C, 41.16; H, 3.38; N, 3.21.

Conclusion

In conclusion, we have synthesized a new series of α -(arylaminothiocarbonyloxy)hydrocarbylphosphonates. The operation is simple and the yield is quite high (75-90 %).

ACKNOWLEDGEMENT

The authors are grateful for the financial from the Natural Science Foundation of Technology Commission of Henan Province (No. 0611021700).

REFERENCES

- K.P. Kumar, C. Muthiah, S. Kumaraswamy and K.C.K. Swamy, *Tetrahedron Lett.*, 42, 3219 (2001).
- 2. C. Muthiah, K.P. Kumar, C.A. Mani and K.C.K. Swamy, J. Org. Chem., 65, 3733 (2000).
- 3. G.F. Zheng and L.T. Li, *Pest Trans.*, 18, 1 (1996).
- 4. K.C.K. Swamy, S. Kumaraswamy, K.S. Kumar and C. Muthiah, *Tetrahedron Lett.*, **46**, 3347 (2005).
- 5. X.F. Liu and Y. Wang, Chin. J. Appl. Chem., 22, 40 (2005).
- 6. S. Failla, P. Finocchiaro and G.A. Consiglio, Heteroatom Chem., 14, 493 (2000).
- 7. H.W. He and Z.J. Liu, Chin. J Org. Chem., 21, 878 (2001).

3584 Li et al.

Asian J. Chem.

- 8. K. Kozlowski, P. Rath and C.D. Spilling, *Tetrahedron*, **51**, 6385 (1995).
- 9. D.V. Petal, K.R. Gauvin and D.E. Ryono, Tetrahedron Lett., 31, 5587 (1990).
- 10. F. Hammerschmidt and H. Vollenkle, Leibigs. Ann. Chem., 12, 577 (1989).
- 11. L. Maier, Phosphorus, Sulfur, Silicon Rel. Elem., 76, 119 (1993).
- 12. H.W. He, S.Q. Wang and Z.J. Liu, Chin. J Appl. Chem., 15, 89 (1998).
- A.F. Prokofeva, L.P. Gryaznova and N.N. Melnikov, Zh. Obshchei Khimii, 53, 1517 (1983).
- 14. V.V. Alekseev and N.P. Pokryshchenko, Zh. Obshchei Khimii, 38, 1770 (1968).
- 15. E. Andrzej and H. Wosik, Tetrahedron: Asymmetry, 15, 2075 (2004).
- 16. F.T. Boullet and A. Foucaud, Synthesis, 916 (1982).
- 17. T. Boullet and A. Foucaud, Synthesis, 165 (1982).
- 18. T. Boullet and M. Lequitte, Tetrahedron Lett., 27, 3515 (1986).
- 19. X.F. Liu, H.W. He and Q.C. Zhou, Chin. J. Pesticide Sci., 3, 73 (2001).
- 20. E. Joe and W.P. Reeves, J. Org. Chem., 29, 3098 (1964).
- R.P. Yves, S. Herve, V. Philippe, L. Eric, D. Sonia and M. Charles, *Tetrahedron Lett.*, 42, 8479 (2001).
- 22. R.P. Yves, S. Herve, V. Philippe, J. Ludovic, V. Alain and M. Charles, *Chem. Eur. J.*, **8**, 2910 (2002).

(Received: 25 July 2007: Accepted: 4 February 2008) A	Received: 23 July 2007: Accep	ted: 4 February 2008)	AJC-6290
---	-------------------------------	-----------------------	----------

VIPSI-2008 VENICE

25 – 28 SEPTEMBER 2008

VENICE, ITALY

Contact: Dr. Veljko Milutinovic, General Chairman, e-mail:venice@internetconferences.net, web site : http://internetconferences.net/ipsi/conference.php?conf=83