DFT Studies of the Molecluar Structure and Conformational Process of Tricyclic Antidepressants

Mina Haghdadi
Department of Chemistry, Islamic Azad University, Babol Branch, P.O. Box 755, Iran
E-mail: haghdadim@yahoo.com

Abstract

Trimipramine, imipramine, amitriptyline, desipramine and doxepine were subjected to $a b$ initio (HF/6-31G(d)) and DFT ((b3lyp/6-31G(d) and (b3lyp/6-311+G(d)) computation. Molecular geometries and the activation energies for ring inversions were determined with full geometry optimizations. Results obtained reveals that the changes of side-chain conformation, the angle value between two phenyl rings and the type of N -amine on side-chain can be affected on drug activity.

Key Words: Tricyclic antidepressants, DFT calculation, Drug activity.

INTRODUCTION

The major schological drugs were discovered ${ }^{1}$ in 1950s. Two types of these drugs are antipsychotic and antidepressant drugs. Chloropromazine is one of the most important antipsychotic compounds, which is derived from phenothiazine ${ }^{2-6}$. The successful performance of chloropromazine is caused the synthesis of another type of compounds with cyclic skeleton, which is expected to be used as antipsychotic characteristic in comparison with chloropromazine derivatives. But the result of experiments reveals that they are impressed a little effect in control of imaginations and they can be used as ideal antidepressant agent. These compounds are dibenzaphine derivatives ${ }^{7-9}$. Todays there are many synthesized psychotherapy drugs that are similar to these compounds. For example whereas phenothiazine and thioxanthene compounds which have antipsychotic and nuroleptic activities but the derivaties of dibenzapine and dicycloheptadiene compounds are used as antidepressant and thymoleptic agents ${ }^{10-12}$. Also trimipramine (1), imipramine (2), amitriptyline (3), desipramine (4) and doxepine (5) are some antidepressant drugs which have been prepared by several methods ${ }^{13-18}$. As can be seen from Scheme-I, these antidepressant drugs have a seven member ring in the center which was surrounded by two aromatic rings. Different substituents which are joined to this ring affected on the drug activities and properties of these compounds and demonstrated
the relationships between structures and activities ${ }^{19}$. In this study we investigated the molecular structure of these compounds by using the ab initio and density functional theory methods. These calculations were done at HF/6-31G (d), b3lyp/6-31G (d) and b3lyp/6-311+G (d) level of theory. In addition, the energy barrier of inversion in seven member ring for these compounds was calculated and the relationship between their structures and drug activities were investigated.

CALCULATIONS

All calculations on trimipramine, imipramine, amitriptyline, desipramine and doxepine compounds were performed by using the Gaussian 2003 program pakage ${ }^{20}$. The global minima geometry of all compounds was fully optimized by using the Hartree-Fock (HF) method with the $6-31 \mathrm{G}(\mathrm{d})$ basis set and Beck's three-parameter hybrid method (B3LYP) with the $6-31 \mathrm{G}(\mathrm{d})$ and $6-311+\mathrm{G}(\mathrm{d})$ basis sets. The nature of optimized geometries for global minima at the HF level has been checked with frequency calculations. In order to calculate the ring inversion energy barrier for global minima geometry, the geometry of transition state was also optimized.

RESULTS AND DISCUSSION

Since higher levels of theory are more reliable, therefore the majority of the discussion will be focused on the results which are obtained at the DFT level.

Molecular geometry of the stable structures: The geometrical parameters of trimipramine, imipramine, amitriptyline, desipramine and doxepine (1-5) were calculated with $6-31 \mathrm{G}(\mathrm{d})$ and $6-311+\mathrm{G}(\mathrm{d})$ basis set and presented in Tables 1-3. The results of calculations were shown that the stable conformers for these compounds have similar geometries but their bond angles and dihedral angles could be change due to the effect of different factors. These substituents share a basic chemical structure comprising a threering core and an alkylamine side chain (Scheme-I).

The conformation of side chain conformation seems to be responsible for their various biological activities and linkage of nitrogen atom by a three-carbon atom chain to ring center, plays an important role in medicinal chemistry ${ }^{21}$. Due to the importance of side-chain, we first investigated the bond length, bond angle and dihedral angle of these compounds which was affected by the side-chain.

The present calculation results reveals that the distance of N -side chain to the center ring $\left(\mathrm{r}_{8}, \mathrm{r}_{9}\right)$ is 4.91 and $5.62 \AA$, respectively in desipramine, which is shorter than another compounds (Table-1). This means that the sidechain is twised toward rings in desipramine, whereas in other compounds the values of r_{8} and r_{9} are larger and the side-chain is oriented along the
No.

Scheme-I

rings. The calculated dihedral angles show that the values of ϕ_{2} and ϕ_{3} in desiperamine are lower than other compounds and the values of ϕ_{5} and ϕ_{6} are increased in this compound, which is the result of direction of sidechain toward aromatic ring (Table-3).

The compounds which contain the side-chain with secondary amine have more antidepressant activity than the tertiary analogues. Imipramine has tertiary amine side chain which is exhibited relativity lower activity than desipramine with secondary amine side chain. The change of dihedral angles (ϕ) and bond angles (θ) values confirmed this subject. The values of θ_{1}, θ_{2} and θ_{3} in desipramine were larger than imipramine, whereas other bond angles of the center ring in imipramine is increased (Table-2). The values of $\theta_{9}-\theta_{12}$ in side chain of desipramine increased in comparison imipramine. Also the values of dihedral angles of ϕ_{5} and ϕ_{6} increased in desipramine and the dihedral angle ϕ_{2} decreased in this compound. Furthermore $\phi_{11}-\phi_{14}$ angles in desipramine were less than imipramine. The sign of the ϕ_{8} and ϕ_{9} angles in desipramine are opposite to imipramine, which shows the differences in side chain directions in these compounds. Also, the presence of substitute on side chain can be affected on the value of tortional and bond angles. Whereas in trimipramine a methyl group exist on side chain, in imipramine this group is omitted. It was also observed, the changes of angles is related to the structure of side chain. Therefore the bond angles of central ring, specially the θ_{5} value, decreased in trimipramine. As can be seen in Table-2, the bond angles of side chain $\left(\theta_{8}, \theta_{10}\right.$ and $\left.\theta_{11}\right)$ are decreased
TABLE-1
OPTIMIZED BOND LENGTHS FOR THE STABLE CONFORMERS OF COMPOUNDS $\mathbf{1 - 5}$ OBTAINED AT THREE LEVELS OF THEORY

Levels	X	Y	R	r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	r_{7}	r_{8}	r_{9}	r_{10}	r_{11}
HF/6-31G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.508	1.530	1.524	1.398	1.423	1.430	1.395	7.06	7.53	6.60	7.29
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.508	1.529	1.522	1.397	1.428	1.428	1.394	7.51	6.95	6.76	7.42
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.509	1.532	1.526	1.339	1.502	1.497	1.395	7.77	6.88	6.74	7.34
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	1.506	1.530	1.525	1.401	1.426	1.427	1.394	5.56	4.91	6.50	7.17
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.506	1.408	1.354	1.398	1.501	1.496	1.394	7.75	7.00	6.83	7.30
B3LYP/6-31G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.508	1.537	1.524	1.414	1.437	1.438	1.407	7.58	7.10	6.73	7.39
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.506	1.537	1.522	1.414	1.429	1.434	1.406	7.53	7.03	6.92	7.55
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.509	1.538	1.526	1.414	1.499	1.495	1.408	7.86	6.98	6.85	7.44
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	1.504	1.536	1.525	1.417	1.430	1.432	1.406	5.61	4.91	6.69	7.34
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.504	1.432	1.369	1.416	1.497	1.493	1.407	7.85	7.08	6.90	7.37
B3LYP/6-311+G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.506	1.536	1.528	1.411	1.436	1.437	1.404	7.58	7.09	6.71	7.38
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.505	1.535	1.521	1.412	1.427	1.433	1.404	7.47	6.98	6.91	7.54
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.508	1.536	1.525	1.411	1.497	1.494	1.405	7.83	6.93	6.81	7.41
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	1.503	1.434	1.524	1.415	1.429	1.431	1.404	5.62	4.92	6.50	7.17
		CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	1.503	1.435	1.368	1.413	1.497	1.493	1.404	7.82	7.04	6.87	7.34

TABLE-2

TABLE-3
OPTIMIZED TORSIONAL ANGLES FOR THE STABLE CONFORMERS OF COMPOUNDS $\mathbf{1 - 5}$ OBTAINED AT THREE LEVELS OF THEORY

Levels	X	Y	R	ϕ_{1}	ϕ_{2}	ϕ_{3}	ϕ_{4}	ϕ_{5}	ϕ_{6}	ϕ_{7}	ϕ_{8}	¢,	ϕ_{10}	ϕ_{11}	ϕ_{12}	ϕ_{13}
HF/6- 31G(d)			$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{I} \\ & \left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	65.968	61.461	10.510	-1.746	50.302	-69.726	5.208	82.873	54.756	-175.567	163.213	-105.253	83.295
		N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	66.148	-65.231	14.568	-0.49	45.342	-66.193	5.020	69.926	65.595	-171.549	166.388	-95.479	75.549
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	70.832	-62.599	7.218	0.095	50.828	-67.750	0.911	-0.489	118.897	-178.299	162.056	-68.519	51.087
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	69.109	-56.864	2.756	-1.258	59.470	-75.423	1.719	-57.423	-63.673	-61.774	97.108	-41.446	25.077
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	71.575	-68.111	12.05	0.379	46.246	-61.442	0.656	0.356	118.246	-177.619	162.506	-63.297	47.788

| CH_{2} | N | $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}$ | 66.079 | -65.292 | 13.101 | 0.263 | 46.202 | -68.957 | 6.808 | 80.694 | 53.873 | -176.351 | 164.799 | -102.765 | 78.178 |
| :--- |

| 66.168 | -69.690 | 17.515 | 2.105 | 39.556 | -64.028 | 6.298 | 69.584 | 64.649 | -168.669 | 168.471 | -88.847 | 66.708 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

69.504	-60.526	6.563	-0.53	54.445	-71.637	1.601	-55.324	-62.069	-61.907	92.479	-39.183	22.240
7												

 $\begin{array}{lllllllllllllllllll}\mathrm{CH}_{2} & \mathrm{~N} & \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N} & 66.018 & -64.974 & 12.747 & 0.199 & 46.562 & -69.175 & 6.801 & 80.376 & 54.286 & -176.378 & 164.312 & -103.061 & 78.419\end{array}$

 | O | $\mathrm{CH} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ | 72.382 | -68.435 | 11.298 | 2.067 | 44.366 | -60.766 | 0.462 | -0.105 | 119.524 | -176.719 | 164.514 | -61.383 | 45.572 |
| :--- |

in imipramine relative to trimipramine. The dihedral angles $\phi_{1}-\phi_{4}$ in imipramine is increased, whereas the $\phi_{5}-\phi_{7}, \phi_{8}, \phi_{10}, \phi_{12}$ and ϕ_{13} are decreased relative to trimipramine.

The changes in bond length, bond angles and torsional angles in the center ring of these compounds can be affected on their drug activities. We found a correlation between drug activity and bond length in these compounds. This correlation exists between r_{4} and Ec_{50} (effective drug concentration), therefore the value of r_{4} in desipramine (with high drug activity) was higher than other investigated compounds.

According to the present calculations, the value of θ_{1} in trimiprame (with the lowest drug activity) is decreased and the θ_{4} angle of this compound is increased relative to other compounds. In the other hand the value of θ_{4} in desipramine is lower than other compounds.

The most correlation between torsional angles and drug activity was related to $\phi_{2}(R=-0.954)$. As can be seen in Table-3, the value of ϕ_{2} in desipramine was lower than the other compounds. On the other hand, the direction of side chain in respect to one aromatic ring can be affected on the value of dihedral angles, as in desipramine which the side-chain twisted toward the aromatic rings two dihedral angles ϕ_{2} and ϕ_{3} were decreased and ϕ_{5} and ϕ_{6} were increased in comparison with other investigated compounds. There are also two additional steric parameters which were affected on the tricyclic structure of these compounds. One important steric parameter which affected on the structure and drug activity is the angle between two planes of aromatic rings which is named angle of flexure ($\beta)^{23}$ (Table-4). As this angle became lower, the molecule was more bent and thymoleptic characteristic was increased. As two aromatic rings became closer, the values of r_{10} and r_{11} which indicate the distances between two aromatic rings, were decreases (Table-1). The results of calculation in the present study shows that in desiperamine which has the highest antidepressant activity the values of r_{10} and r_{11} are lower than other compounds, while in imipiramin which has mainly neuroleptic activity the values of r_{10} and r_{11} are higher than other compounds.

Another parameter that can be affected on drug activity is the torsional angle (γ). This angle shows the value of torsion of two aromatic rings to gather of them. As can be seen from Table-4, the angle of torsion in desipramine is decreased, whereas trimipramine has higher value than the other compounds. Therefore, when the amount of γ is decreased, the antidepressant activity is increased.

Energetics of ring inversion: The barrier of ring inversion is studied in the case of compounds without side chain. One structural features of these compounds in association of the saturated ring which fused to benzene ring. This ring can not be considered as cycloheptane or its heterocyclic

TABLE-4
OPTIMIZED ANGLES OF FLEXURE AND TORSION FOR THE STABLE CONFORMERS OF COMPOUNDS 1-5 OBTAINED AT THREE LEVELS OF THEORY

Level	X	Y	R	β	γ
HF/6-31G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.06	18.59
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.01	18.01
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.36	15.38
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	30.73	14.31
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.70	14.57
B3LYP/6-31G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.05	19.25
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.02	20.94
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.32	16.46
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	30.41	15.37
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.64	15.48
B3LYP/6-311+G(d)	CH_{2}	N	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.04	19.31
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.02	19.09
	CH_{2}	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.35	16.33
	CH_{2}	N	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{3}\right)$	30.34	15.43
	O	CH	$\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	29.66	15.48

analogues in a boat conformation because it has two carbon-carbon double bond. The so-called 'twist-boat' conformation has been considered to be the most likely structure. This ring is expected to exist in two interconvertible enantiomeric forms with a boat transition state. Therefore, we investigated the ring inversion in compounds of 6,7 and $\mathbf{8}$ in Scheme-II. These structures are optimized at RHF/6-31G (d), the results of calculation reveals that the most stable conformation for these compounds is twist-boat conformation.

No.	X	Y
$\mathbf{6}$	CH_{2}	NH
$\mathbf{7}$	CH_{2}	CH_{2}
$\mathbf{8}$	O	CH_{2}

Scheme-II

The degenerate interconversion of twist-boat with its mirror image takes place via the boat transition state (Fig. 1). The calculated strain energy barrier for this process in compounds $\mathbf{6 - 8}$ are $56.4,13.7$ and $13.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The calculated strain energy barrier for compounds $\mathbf{7}$ and $\mathbf{8}$ are almost equal and it is not expected to be observed by dynamic NMR experiments even at $-180^{\circ} \mathrm{C}$.

Fig. 1. Ring inversion in compounds $\mathbf{6 - 8}$

REFERENCES

1. R.J. Baldessarini, in eds.: J.G. Hardman, L.E. Limbird, P.B. Molinoff, R.W. Ruddon and A.G. Gilman, Drugs and the Treatment of Psychiatric Disorders, The Pharmacological Basis of Therapeutics, New York, McGraw Hill, p. 431 (1995).
2. T. Lwaoka and M. Kondo, Bull. Chem. Soc. (Japan), 47, 980 (1974).
3. D.C. Borg and G.C. Cotzlas, Proc. Natl. A Cad. Sci. USA, 48, 623 (1962).
4. D.C. Borg and G.C. Cotzlas, Proc. Natl. A Cad. Sci. USA, 48, 617 (1962).
5. A. Szent-GyÖrgyi, Introduction to a Submolecular Biology, Academic Press, New York (1960).
6. R.M. Julien, A Primer of Drug Action, W.H. Freeman, San Francisco, California (1975).
7. H. Beckmann, Nervenarzt, 52, 135 (1981).
8. L.E. Hollister, Ann. Intern. Med., 89, 78 (1978).
9. L.E. Hollister, Drugs, 22, 129 (1981).
10. R.R. Gupta, Phenothiazines and 1,4-Benzothiazines: Chemical and Biomedical Aspect, Elsevier Sience Publishers: Amsterdam, p. 1 (1988).
11. D.M. Perrine, The Chemistry of Mind-Altering Drugs: History, Pharmacology and Cultural Context, American Chemical Society: Washington DC (1996).
12. D.T. Witiak, in ed.: A. Bueger, Antiallergenic Agents, In Medicinal Chemistry, WileyInterscience; New York, Part II, edn. 3, p. 1643 (1970).
13. E.G. Knapick, P. Ander and J.A. Hirsch, Synthesis, 58 (1985).
14. P. Vanhoff and P. Clarebout, Ger. Pat., 20,721 (1971); Chem. Abstr., 75, 76463x (1971).
15. E. Testa, G. Pifferi, L. Fontanella and V. Ares, Liebigs Ann. Chem., 696, 108 (1966).
16. O. Hromatka, F. Sauter and I. Grass, Monatsh. Chem., 88, 56 (1957).
17. W.A. Schuler and H. Klebe, Liebigs. Ann. Chem., 653, 172 (1962).
18. W. Schindler and F. Hafliger, Helv. Chim. Acta, 37 (1954).
19. G. Klopman, J. Chem. Inf. Comput. Sci., 38, 78 (1998).
20. M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.

Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian, Inc., Pittsburgh PA (2003).
21. M. Windholz, S. Budavari, R.F. Blumetti and E.S. Otterbein, The Merck Index-An Encyclopedia of Chemicals, Drugs and Biologicals, Merck \& Co., Inc: Rahway, NJ (1983).
22. A.C. Moffat, J.V. Jackson, M.S. Moss and B. Vwiddop, Clarke's Isolation and Identification of Drugs, The Pharmaceutical Press, London (1986).
23. E. Junquera, J.C. Romero and E. Aicart, Langmuir, 17, 1826 (2001).

20TH INTERNATIONAL CONFERENCE ON CHEMICAL THERMODYNAMICS (ICCT-20)

3 - 8 AUGUST 2008

WARSAW, POLAND

Contact:
e-mail:secretariat@icct2008.org
web site: http://www.icct2008.org/

