Chemical Composition and Antimicrobial Activities of the Essential Oils of *Viburnum opulus*, *Viburnum lantana* and *Viburnum orientala*

Nagihan Yilmaz, Nuran Yaylı, Gülbin Misir, Kamil Çoskunçelebi†, Sengül Karaoglu‡ and Nurettin Yaylı*

Department of Chemistry, Faculty of Arts and Sciences Karadeniz Technical University, Trabzon 61080, Turkey Fax: (90)(462)3253195; Tel: (90)(462)3772486; E-mail: yayli@ktu.edu.tr

The composition of the essential oils obtained from the airdried *Viburnum opulus* and *Viburnum lantana* were analyzed by GC-MS. 40 and 53 Components were identified in the essential oils and the main component of these taxons were phytol and occidenol in the ratios 7.8 and 6.3 % from *V. opulus* and *V. lantana*, respectively. The isolated essential oils of *V. opulus*, *V. lantana* and *V. orientala* were also tested for antimicrobial activity against the bacteria *E. coli, K. pneumoniae*, *P. aeruginosa*, *E. faecalis*, *S. aureus*, *B. cereus* and the fungus *C. tropicalis*, at maximum essential oil concentrations in hexane of 250, 500 and 1000 µg/mL, respectively, though no activity was observed against all the test microorganisms for *V. lantana* and *V. opulus*. However, the essential oil of the *V. orientale* showed weak antibacterial activity against Gram-positive bacteria.

Key Words: Viburnum opulus, V. lantana, V. orientala, Essential oil, Antimicrobial activity, GC-MS.

INTRODUCTION

Viburnum L. (Caprifoliaceae) represented with 4 deciduous shrubs species in Turkey¹. Viburnum opulus L. are grown as ornamental plant in many countries and the dried fruits consisting of phenolic glucoside, tannes and some organic acids were used for complaints of uterine cramps, colicky pains in pelvic organs². The stem bark and fresh shots of Viburnum lantana L and V. opulus are also used in Anatolia folk medicine as a pain killer^{3,4}.

[†]Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon 61080, Turkey.

[‡]Department of Biology, Faculty of Arts and Sciences, Rize University, Rize 53100, Turkey.

Previous phytochemical studies on *V. lantana* and *V. opulus* have shown the presence of different natural compounds including iridoids, iridoid glucosides, lantanoside, flavonoids, saponins, tannins, arbutin, ursolic acid, flavones and anthocyanins⁵⁻¹². The essential oil composition and chemical constituents of *V. orientale* are reported¹³⁻¹⁵. But antimicrobial activity is not mentioned in the literature.

To our knowledge, there is no published report on the essential oil analysis and antimicrobial activity of *V. opulus* and *V. lantana*. As part of this systematic research, the essential oil constituents of the plants were obtained by the widely used hydrodistillation method in a Clevenger-type apparatus. The obtained crude essential oils were then investigated by GC-MS technique. Identification of the compounds was made by a typical library search (NIST, WILLEY) and literature comparison¹⁶⁻²⁰.

EXPERIMENTAL

V. opulus and *V. orientale* were collected from Düzköy-Trabzon (at a height of *ca.* 1300 m) in the northeastern part of Turkey in September 2004. *V. lantana* was collected around Karaca cave, Torul-Gümüshane (at a height of *ca.*1500 m) in the northeastern part of Turkey in September 2004. The plants were authenticated immediately after collection and air-dried at room temperature for later analysis¹⁶. Voucher specimens (No. Coskunçelebi 546, 547 and 548-2004 KTUB) were deposited in the Herbarium of the Department of Biology, Karadeniz Technical University, Turkey.

Isolation of the essential oils: Crude essential oils of *V. opulus, V. lantana* and *V. orientale* were obtained from the air-dried whole plants (*ca.* 35 g, each) by hydrodistillation in a Clevenger-type apparatus with cooling bath (-15 °C) system (3 h) (yields: 0.10, 0.15, 0.43 % and (v/w), respectively). The oils were taken by HPLC grade *n*-hexane (0.5 mL) and dried over Na₂SO₄ kept at 4 °C in a sealed brown vial. One μL of the extracts was directly injected into the GC-MS instrument.

Gas chromatography: GC-MS analyses were done as described previously²¹.

Identification of components: The components of the oil were identified by comparison of their mass spectra with those of mass spectral libraries (NIST and Willey) and confirmed by comparison of their retention indices with data published in the literature¹⁶⁻²⁰.

Antimicrobial activity assessment: All test microorganisms were obtained from Refik Saydam Hifzissihha Institute (Ankara, Turkey) and were as follows: Ec: *Escherichia coli* ATCC 25922, Kp: *Klebsiella pneumoniae* ATCC 13883, Pa: *Pseudomonas aeruginosa* ATCC 10145, Ef: *Enterococcus faecalis* ATCC 29212, Sa: *Staphylococcus aureus* ATCC 25923, Bc: *Bacillus cereus* 709 Roma, Ct: *Candida tropicalis* ATCC 13803.

3326 Yilmaz et al. Asian J. Chem.

Agar dilution MIC assay: Using a modification of the assay described by Southwell *et al.*²² and Mann *et al.*²³ the samples were added to molten Mueller-Hinton agar (MHA) and Potato Dextrose agar (PDA)/Tween 20 medium at 48 °C, to give concentrations ranging from 50 to 1000 μg/mL. The antibacterial assay was performed in Mueller-Hinton broth (MHB) (Difco, Detroit, MI) at pH.7.3 containing 1 % agar and 0.25 % Tween 20. The antifungal assay was performed in PDA (Difco, Detroit, MI) at pH 6.2 containing 0.25 % Tween 20. Plates prepared in triplicate were spot inoculated with 3 μL aliquots of culture in MHB adjusted to yield a density within McFarland 0.5 turbidity. Plates were incubated at 37 °C for 18 h and the minimal inhibition concentration (MIC) was determined as the lowest concentration of the samples to result in no growth of the inoculum on two of three plates. The essential oils were dissolved in hexane to prepare the stock solutions. Hexane was used as control. Ampicillin and fluconazole were standard drugs. The results are shown in Table-3.

RESULTS AND DISCUSSION

The compositions of essential oils of *V. opulus* and *V. lantana* were analyzed by GC-MS with HP-5 column. A total of 40 and 53 components were characterized on the basis of a typical library search and literature data with selecting only the components showing matches exceeding 80%, which represented about 85.3 and 82.3 % of total composition of the essential oils in *V. opulus* and *V. lantana*, respectively¹⁶⁻²⁰. The general chemical profile of the essential oils, the percentage content and the retention indices of the constituents are summarized in Table-1.

Phytol (7.8%), *trans*-β-damascenone (4.9 %), α-cadinol (4.8%), γ-cadinene (4.7 %), Δ -cadinene (4.5 %) and methyl pentanoate (4.1 %) were the main constituents of the essential oil of *V. opulus*, whereas occidedenol (6.3 %), α-cadinol (5.6 %), γ-cadinene (4.6 %), 2E,4E-decadienal (4.5%), *n*-heptanal (3.9 %) and Δ -cadinene (3.4 %) were the main components of the essential oil of *V. lantana*.

The chemical class distribution and the main components in each class of the essential oils of *V. opulus* and *V. lantana* are reported in Table-2. The compounds were separated into six classes, which were monoterpene, monoterpenoids, sesquiterpenes, sesquiterpenoids, diterpenoids and others (Table-2). 23 Compounds were common to all two species with the total ratio of 46.7 and 43.0 % in *V. opulus* and *V. lantana*, respectively. Some chemical differences on the composition of the essential oils of *V. opulus* and *V. lantana* were found and probably related to the different subspecies and/ or to the geographical origin of the plants.

The antimicrobial activity of the essential oils from *V. opulus*, *V. lantana* and *V. orientale* were tested against the bacteria *E. coli*, *K. pneumoniae*,

TABLE-1
IDENTIFIED COMPONENTS IN THE ESSENTIAL OILS OF Viburnum opulus AND Viburnum lantana^{a,b}

Viburnum opulus AND Viburnum lantana"									
		V. opulus		V. lantana		Evn	T :4		
No.	Compounds	Q (%)	Area (%)	Q (%)	Area (%)	Exp.	Lit. RI		
1	Methyl pentanoate	89	4.1	-	-	826	828		
2	3Z -Hexen-1-ol	86	1.7	_	-	858	859		
4	2-Heptanone	-	_	82	0.3	887	889		
5	<i>n</i> -Heptanal	88	1.9	91	3.9	901	902		
6	Benzaldehyde	_	_	94	1.9	957	960		
7	1-Octen-3-ol	_	_	87	0.8	979	978		
8	6-Methyl-5-hepten-2-one	_	_	87	0.1	990	992		
9	2-Pentylfuran	91	2.0	94	2.5	995	998		
10	2, 4 Heptadienal	-	_	91	1.1	998	1003		
11	<i>n</i> -Octanal	_	_	90	1.1	999	999		
	Limonene	_	_	94	0.9	1026	1029		
	Phenyl acetaldehyde	91	1.9	-	-	1043	1042		
	<i>n</i> -Octanol	_	-	84	0.6	1069	1068		
	Linalool oxide	64	1.6	-	-	1075	1078		
	cis-Linalool oxide	-	-	88	0.5	1086	1087		
17	Terpinolene	88	0.5	-	-	1088	1089		
	L-Linalool	81	1.4	88	0.5	1096	1097		
	n-Nonanal	87	0.9	91	2.9	1105	1102		
	2E, 6Z-Nonadienal	91	0.3	-		1153	1155		
21	4-Terpineol	91	1.9	_	_	1175	1177		
22	α-Terpineol	90	1.7	83	0.3	1187	1189		
	Methyl salicylate	97	1.8	93	0.3	1190	1192		
	Myrtenol	86	0.9	-	-	1194	1196		
	<i>n</i> -Decanal	85	0.8	91	0.6	1204	1202		
26	2E, 4E-Nonadienal	-	-	80	0.6	1213	1212		
27	trans-Carveol	28	0.6	-	-	1219	1217		
	Geraniol	82	1.7	-	_	1255	1253		
	2 <i>E</i> -Decanal	86	1.7	82	3.3	1263	1264		
	Cinnamaldehyde	-	-	95	0.5	1203	1270		
31	2E, 4Z -Decadienal	80	1.7	90	1.6	1271	1293		
	2E, 4E- Decadienal	81	1.8	93	4.5	1316	1317		
				93 97	0.8	1352	1351		
	α-Cubebene	-	-						
34	1	87	0.7	98	3.5	1377	1377		
	<i>trans-</i> β -Damascenone	95	4.9	-	-	1384	1385		
	β-Bourbonene	-	-	96	1.0	1388	1388		
37	trans-α-Ambrinol	86	1.8	-	-	1415	1417		
38	E-Caryophyllene	-	-	88	0.8	1420	1419		
39	β-Copaene	-	-	93	0.5	1430	1432		
40	Geranyl acetone	-	-	89	0.3	1454	1455		
41	γ-Murolene	-	_	95	1.6	1479	1480		
42	α-Amorphene	86	1.6	97	0.8	1481	1485		
43	Germacrene D	93	0.7	98	1.7	1482	1485		
44	β-Ionone	89	1.9	93	0.4	1487	1489		
	h-ronone	09	1.7	73	0.4	1707	1702		

3328 Yilmaz et al. Asian J. Chem.

45 α-Muurolene	-	-	96	1.2	1500	1500		
46 γ-Cadinene	6 γ-Cadinene			96	4.6	1515	1514	
47 Δ-Cadinene		95	4.5	95	3.4	1525	1523	
48 trans-Cadina-1,	8 trans-Cadina-1, 4-diene			89	0.2	1535	1535	
49 α-Calacorene					0.7	1545	1546	
50 Occidentalol		-	-	99	0.9	1552	1552	
51 E-Nerolidol		-	-	74	0.6	1566	1563	
52 Ledol		93	0.8	-	-	1573	1569	
53 Spathulenol		-	-	99	1.5	1580	1578	
54 Caryophyllene		-	-	98	1.4	1584	1583	
55 Salvial-4(14)-er	n-1-one	-	-	98	1.3	1595	1595	
56 Tetradecanal		91	3.7	-	-	1612	1613	
57 γ-Eudesmol		-	-	93	0.9	1634	1632	
58 α-Muurolol		81	3.5	93	2.6	1645	1646	
59 β-Eudesmol		-	-	99	2.7	1652	1651	
60 α-Cadinol		99	4.8	94	5.6	1655	1654	
61 Occidenol		_	_	90	6.3	1677	1678	
62 Eudesma-4(15,	7-dien-1- <i>β</i> -ol	_	_	85	0.9	1685	1688	
63 Pentadecanal	, /	94	3.8	91	1.4	1715	1717	
64 6, 10, 14-trimet	_	_	97	1.6	1847	1846		
pentadecanone	•							
65 Nonadecane		-	-	98	0.4	1900	1900	
66 Manool	64	0.9	-	-	2057	2057		
67 <i>n</i> -Heneicosane		95	1.9	98	1.8	2100	2100	
68 Phytol		74	7.8	-	-	2114	2113	
69 <i>n</i> -Docosane		87	1.2	89	1.3	2200	2200	
70 <i>n</i> -Tricosane		80	1.4	91	0.8	2300	2300	
Total isolate		85.3 82.3						
Unknown RI		(%)		V. op	oulus	V. lantana		
Un-1 828 101(5), 87(, 74(100				-		
	69(20), 57(63))						
Un-2 899	124(8), 104(10			.2	-			
	78(46), 51(28)							
Un-3 973	124(5), 106(3)),	1.9		-		
	69(12), 57(96)							
Un-4 979	112(8), 97(20)			-		2.7		
	70(58), 57(63)							
Un-5 1056	2), 97(23		-		2.3			
	83(72), 70(100			. 				
Un-6 1287	194(23), 179(1			1.7		-		
11 7 1501	107(39), 69(50), 55(21)						1.3	
Un-7 1591	Un-7 1591 220(46), 177(43), 159(100),						.3	
TD (1 1	91(98), 55(587	()		1.0			2	
Total unknown).4	6.3			
Total isolate					5.3	82.3		
Total		95	5.7	88.6				

^aRI, retention index; LRI, literature retention index; Q: Quality; ^bCompounds are listed in order of elution. RI (retention index) values are calculated from retention times relative to that of n-alkanes (C_6 - C_{32}) on the non-polar HP-5 column.

TABLE-2
CHEMICAL CLASS DISTRIBUTION AND THE MAIN COMPONENTS
IN EACH CLASS OF THE ESSENTIAL OILS OF Viburnum opulus
AND Viburnum lantana

	Viburnum opulus				Viburnum lantana		
Compound class	Area (%)	N^{a}	Major component	Area (%)	N^{a}	Major component	
Monoterpene	0.5	1	Terpinolene	0.9	1	Limonene	
Monoterpenoids	18.4	10	<i>t</i> -β-Damascenone	2.1	5	L-Linalool	
Sesquiterpenes	16.4	7	γ-Cadinene	20.8	13	γ-Cadinene	
Sesquiterpenoids	9.1	3	α-Cadinol	26.3	12	Occidenol	
Diterpenoids	8.7	2	Phytol	_	_	_	
Others	32.2	17	Methyl pentanoate	32.3	22	2E,4E-Decadienal	

^aN = Number of compounds.

P. aeruginosa, E. faecalis, S. aureus, B. cereus and the fungus *C. tropicalis* at maximum essential oil concentrations in hexane of 250, 500 and 1000 μg/mL, respectively, by using ampicillin and fluconazole as standard antibacterial and antifungal agents^{22,23}. However, no antimicrobial activity was observed against all the test microorganisms for the essential oils from *V. opulus, V. lantana*. But, the essential oil of the *V. orientale* showed weak antibacterial activity against Gram-positive bacteria *E. faecalis, S. aureus* and *B. cereus*. The results are shown in Table-3.

TABLE-3 SCREENING RESULTS FOR ANTIMICROBIAL ACTIVITY OF THE ESSENTIAL OIL COMPONENTS OF Viburnum orientale, Viburnum opulus AND Viburnum lantana (MIC 250-1000 µg/mL)

Commounds	Stock	Microorganisms and MIC value								
Compounds	(μg/mL)	Ec	Kp	Pa	Ef	Sa	Bc	Ct		
V. orientale ^a	4700	_	_	_	1000	1000	1000	_		
V. opulus ^a	900	_	_	_	_	_	_	_		
V. lantana ^a	1800	_	_	_	_	_	_	_		
Hegzan	_	_	_	_	_	_	_	_		
Ampicillin	-	8	32	>128	2	2	2			
Fluconazole								8		

^aThe highest concentrations of *V. orientale*, *V. opulus and V. lantana* are >1000, >250 and >500, respectively.

Ec = Escherichia coli ATCC 25922, Kp = Klebsiella pneumoniae ATCC 13883, Pa = Pseudomonas aeruginosa ATCC 10145, Ef = Enterococcus faecalis ATCC 29212, Sa = Staphylococcus aureus ATCC 25923, Bc = Bacillus cereus 709 Roma, Ct = Candida tropicalis ATCC 13803; (-) = No activity at stock solution concentration.

3330 Yilmaz et al. Asian J. Chem.

ACKNOWLEDGEMENTS

This study was supported by grants from Karadeniz Technical University Research Fund and State Planning Agency (DPT) of Turkey.

REFERENCES

- D.F. Chamberlain, in ed.: P.H. Davis, *Viburnum* L. (Caprifoliaceae), Flora of Turkey and The East Aegean Islands, Edinburgh University Press, Edinburgh, Vol. 4, pp. 543-544 (1972).
- N.D. Prajapati, S.S. Purohit, A.K. Sharma and T. Kumar, A Handbook of Medical Plants, Agrobios, India (2003).
- 3. T. Baytop, Therapy with Medicinal Plants in Turkey, University of Istanbul, Istanbul, p. 187 (1984).
- 4. N. Zeybek and U. Zeybek, Farmasotik Botanik, Ege Universitesi Basimevi, Izmir (1994).
- N. Handjieva, I. Baranovska, B. Mikhova and S. Popov, *Phytochemistry*, 27, 3175 (1988).
- 6. L. Tomassini and D. Brkic, Planta Med., 63, 485 (1997).
- I. Calis, A. Yuruker, H. Ruegger, A.D. Wright and O. Sticher, *Phytochemistry*, 38, 163 (1995).
- 8. R.P. Godeau, Y. Pelissier, C. Sors and I. Fouraste, *Plant Med. Phytothe.*, 12, 296 (1978).
- 9. J. Petricic, G. Stanic and L. Holik, Acta Pharm. Jugos., 30, 97 (1980).
- 10. V. Cucu, M. Rosca, L. Grecu and C. Cioaca, *Pharmazie*, 32, 542 (1977).
- 11. J.P. Guichard, F. Regerat and H. Pourrat, Plant Med. Phytothe., 10, 105 (1976).
- 12. V.I. Deineka, V.N. Sorokopudov, L.A. Deineka, E.I. Shaposhnik and S.V. Kol'tsov, *Chem. Nat. Comp.*, **41**, 162 (2005).
- 13. A. Yürüker, I. Çalis, K.H.C. Baser and T. Ozek, *J. Essen. Oil Res.*, **7**, 321 (1995).
- I. Çalis, A. Yürüker, H. Rüegger, A.D. Wright and O. Sticher, Helv. Chim. Acta, 76, 416 (1993).
- I. Çalis, A. Yürüker, H. Rüegger, A.D. Wright and O. Sticher, Hel. Chim. Acta, 76, 2563 (1993).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy, Allured, Carol Stream, IL, USA (2004).
- N. Yayli, A. Yasar, C. Güleç, A. Usta, S. Kolayli, K. Çoskunçelebi and S. Karaoglu, *Phytochemistry*, 66, 1741 (2005).
- N. Yayli, C. Güleç, O. Üçüncü, A. Yasar, S. Ülker, K. Çoskunçelebi and S. Terzioglu, Turk. J. Chem., 30, 71 (2006).
- 19. G. Figuérédo, P. Cabassu, J.C. Chalchat and B. Pasquier, Flav. Frag. J., 20, 164 (2005).
- 20. H.D. Skaltsa, C. Demetzos, D. Lazari and M. Sokovic, Phytochemistry, 64, 743 (2003).
- C. Güleç, N. Yayli, P. Yesilgil, S. Terzioglu and N. Yayli, Asian J. Chem., 19, 4069 (2007).
- 22. I.A. Southwell, A.J. Hayes, J. Markham and D.N. Leach, *Acta Horticult.*, **334**, 256 (1993).
- 23. C.M. Mann and J.L. Markham, J. Appl. Microb., 84, 538 (1998).