Asian Journal of Chemistry

# Synthesis and Crystal Structure of a [(Phen)<sub>3</sub>Mn]Ni(CN)<sub>4</sub>

JIAN-HONG BI\*, HONG-LIANG WANG<sup>†</sup>, ZI-XIAN HUANG<sup>‡</sup>, NAI-LIANG HU<sup>†</sup> and LING-TAO KONG<sup>†</sup> Department of Chemistry, Hefei Teachers College, 327, Jinzhai Street Hefei, Anhui 230061, P.R. China E-mail: hxx010101@126.com

A novel complex [(Phen)<sub>3</sub>Mn]Ni(CN)<sub>4</sub> where phen is 1,10-phenanthroline, was synthesized and characterized by IR spectra, elemental analysis and single-crystal X-ray. The crystal is monoclinic, space group P2(1)/n with unit cell parameters: a = 10.46930 (10) Å, b = 20.9570 (3) Å, c = 17.07300 (10) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 96.7380 (10)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 3720.03 (7) Å<sup>3</sup>, Z = 4, Mr = 812.39, Dc = 1.451 Mg/cm<sup>3</sup>,  $\mu = 0.899 \text{ mm}^{-1}$ , F(000) = 1668, T = 293 ± 2 K, R = 0.0763, wR = 0.1741 for 6535 reflections with I > 2 $\sigma$ (I). The crystal structure analysis shows that the manganese(II) is a six-coordinated in a slightly distorted octahedron environment, then complex forms layer structure and packs in 3-D net structure through hydrogen bonds and  $\pi$ - $\pi$  stacking interactions.

Key Words: Manganese(II) compound,  $\pi$ - $\pi$  Stacking interactions, Crystal structure, Hydrogen bonds.

### **INTRODUCTION**

There has been increasing interest of Mn(II) and phenanthroline complexes in the field of coordination chemistry<sup>1-3</sup>. At the same time, cyanide have played a prominent role in the design and construction of molecular magnetic material due to their stability and ease of chemical modification<sup>4-7</sup>. In an effort to bring these two research areas together, recently, in our laboratory, a series of transition metal compounds have been synthesized and studied<sup>8-10</sup>. In this paper, the synthesis and crystal structure of manganese(II) complex [(Phen)<sub>3</sub>Mn]Ni(CN)<sub>4</sub> is reported.

#### **EXPERIMENTAL**

 $Mn(ClO_4)_2 \cdot 6H_2O$  was prepared by our laboratory, the other reagents were of AR grade and used without further purification. IR spectra were recorded on a Nexus-870 spectrophotometer. Elemental analysis were performed on a Elementar Vario ELZ(III) analyzer.

<sup>†</sup>School of Chemistry and Chemical Engineering, Anhui University, Hefei-230039, P.R. China.

<sup>‡</sup>Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P.R. China.

3674 Bi et al.

Asian J. Chem.

**Synthesis:** An aqueous solution (10 mL) of Na<sub>2</sub>Ni(CN)<sub>4</sub> (210 mg, 1 mmol) and a mixed solution (20 mL) of Mn(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (370 mg, 1 mmol, 10 mL water) and 1,10-phenanthroline (198 mg, 1 mmol, 10 mL alcohol) were allowed to diffuse slowly in a U-shaped tube, across an agar-gel medium, the temperature was maintained at  $4 \pm 0.5$  °C in a constant-temperature box. Well-shaped red single crystals grew within 3 weeks and were isolated in about a 30 % yield. IR (KBr,  $v_{max}$ , cm<sup>-1</sup>): (N-H) 3390, (C=N) 2120, (C=N) 1660, (C=C) 1520, 1420, (phen) 848, 725. Elemental analysis: Calcd. (%) for [(Phen)<sub>3</sub>Mn]Ni(CN)<sub>4</sub>: C, 59.13; H, 3.72; N, 17.24; Found (%): C, 59.10; H, 3.70; N, 17.23.

**Crystal structure determination:** A single crystal of compound with dimensions of 0.46 mm × 0.46 mm × 0.36 mm was selected for crystallographic data collection at 293 ± 2 K and structure determination on a Siemens SMART CCD area-detector diffractometer with graphite-monochromatic MoK<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å). A total of 11372 reflections were collected in the range of 3.04° ≤  $\theta \le 27.48^\circ$ , of which 6535 reflections were unique with Rint = 0.0358. Lp effects and empirical absorption were applied in data corrections. The structure was solved by direct methods and expanded using Fourier techniques, and SHELXS-97 program system was used in the solution and refinement of the structure. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added according to theoretical model. The final full-matrix least-squares refinement including 220 variable parameters for 6535 reflections with I > 2 $\sigma$ (I) and converged with unweighted and weighted agreement factors of

$$R_1 = \Sigma(||F_0| - |F_c||) / \Sigma|F_0| = 0.0763$$
(1)

and

$$wR_2 = \left\{ \sum [w(F_0^2 - F_C^2)^2] / \sum w(F_0^2)^2 \right\}^{\frac{1}{2}} = 0.1741$$
(2)

where w =  $1/[\sigma^2(F_0^2) + (0.0537P)^2 + 16.3288P]$ , and P =  $(F_0^2 + 2F_c^2)/3$ . The maximum and minimum peaks on the final difference Fourier map are corresponding to 0.917 and -0.645e/Å<sup>3</sup>, respectively.

## **RESULTS AND DISCUSSION**

The atomic coordinates and thermal parameters are listed in Table-1, and the selected bond lengths and bond angles in Table-2. Fig. 1 shows the molecular structure of the title compound. Fig. 2 shows the packing diagram of the title compound. From the Fig. 1, it is easy to see that the manganese(II) ion is six-coordinated with six N atoms.

The hydrogen-bonded geometry involving two kinds of water molecules is characterized in Table-3. One is between crystal waters, and the other is between crystal water and  $[Ni(CN)_4]^2$ . In one layer, the distance between superpositional phenanthroline rings, which are from adjacent two  $[(Phen)_3Mn]^{2+}$ ,

Vol. 20, No. 5 (2008)

Synthesis and Crystal Structure of a [(Phen)<sub>3</sub>Mn]Ni(CN)<sub>4</sub> 3675

TABLE-1NON-HYDROGEN ATOMIC COORDINATES (× 10<sup>4</sup>) ANDTHERMAL PARAMETERS (× 10<sup>3</sup> Å<sup>2</sup>)

| Atom         | Х        | У       | Z       | U(eq)  |
|--------------|----------|---------|---------|--------|
| Ni           | 696(1)   | 2783(1) | 5498(1) | 52(1)  |
| Mn           | 2202(1)  | 499(1)  | 2799(1) | 28(1)  |
| N(1)         | 2932(8)  | 1887(4) | 5935(6) | 117(3) |
| N(2)         | 2142(7)  | 3208(4) | 4169(4) | 77(2)  |
| C(1)         | 2053(7)  | 2225(4) | 5776(5) | 70(2)  |
| C(2)         | 1589(7)  | 3060(3) | 4682(5) | 60(2)  |
| <b>O</b> (1) | 1953(6)  | 3183(4) | 2478(4) | 100(2) |
| O(2)         | -1761(8) | 2931(5) | 3476(6) | 60(2)  |

 TABLE-2

 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

| Bond      | Length    | Angle          | (°)       | Angle           | (°)        |
|-----------|-----------|----------------|-----------|-----------------|------------|
| Ni-C(4)   | 1.849(8)  | O(5)-O(4)-N(1) | 61.2(10)  | Ni(11)-Mn-N(12) | 79.70(2)   |
| Ni-C(3)   | 1.858(7)  | C(2)-N(2)-O(1) | 141.3(6)  | C(20)-N(12)-Mn  | 129.00(4)  |
| N(1)-C(1) | 1.168(10) | C(1)-N(1)-O(5) | 138.8(10) | N(14)-Mn-N(11)  | 169.51(19) |
| N(2)-O(1) | 2.871(10) | O(4)-O(5)-N(1) | 90.4(12)  | C(21-N(12)-Mn   | 112.20(4)  |
| Mn-N(11)  | 2.083(5)  | O(5)-N(1)-O(4) | 28.4(6)   | N(4)-C(4)-Ni    | 174.70(7)  |



Fig. 1.Atom labelling scheme for<br/> $[Mn(Phen)_3]^{2+}$ Fig. 2.Packing diagram of the<br/>title compound

3676 Bi et al.

Asian J. Chem.

| TABLE-3                                    |  |
|--------------------------------------------|--|
| HYDROGEN BOND DISTANCES (Å) AND ANGLES (°) |  |

| D–H···A            | D–H       | Н…А       | D···A      | $\angle$ DHA |
|--------------------|-----------|-----------|------------|--------------|
| O(5)–H(1)···O(4)   | 0.894(16) | 1.845(16) | 2.7392(17) | 178.0(2)     |
| O(5)#1–H(2)···O(1) | 0.864(16) | 2.067(16) | 2.9287(18) | 169.0(2)     |
| O(1)-H(4)···O(3)#1 | 0.876(15) | 1.977(16) | 2.8486(17) | 172.6(19)    |
| O(2)-H(3)···O(3)#1 | 0.875(15) | 2.099(16) | 2.9305(18) | 158.0(2)     |

is about 3.317 Å. That means there is  $\pi$ - $\pi$  stacking interaction. Between  $[(Phen)_3Mn]^{2+}$  and  $[Ni(CN)_4]^{2-}$  has the static electricity attraction, as shown in Fig. 2. In layers, the distance of two adjacent phenanthroline rings is about 3.538 Å. That means there is also  $\pi$ - $\pi$  stacking interaction. By the hydrogen-bonding and  $\pi$ - $\pi$  stacking interactions, the title compound molecules pack in a three-dimensional net structure.

### Conclusion

Crystal structure of a novel manganese(II) complex has been synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis.

### ACKNOWLEDGEMENT

This work is financially supported by the Nature Science Foundation of Anhui Universities.

### REFERENCES

- 1. B. Moulton and M.J. Zaworotko, Chem. Rev., 101, 1629 (2001).
- 2. J. Fan, W.Y. Sun, T.A. Okamura, K.-B. Yu and N. Ueyama, *Inorg. Chem. Acta*, **319**, 240 (2001).
- 3. J.Y. Lu, M.A. Lawandy and J. Li, Inorg. Chem., 38, 2695 (1999).
- 4. G.F. Swiegers and T.J. Malefetse, Chem. Rev., 100, 3483 (2000).
- F.L. De Panththou, E. Belorizky, R. Calemczuk, D. Luneau, C. Marcenat, E. Ressouche, P. Turek and P. Rey, J. Am. Chem. Soc., 117, 11247 (1995).
- 6. Y. Yamamoto and S. Suzuki, J. Chem. Soc., Daltons Trans., 1566 (2001).
- 7. F.A. Cotton, S.M. Morehouse and J.S. Wood, Inorg. Chem., 3, 1603 (1964).
- 8. J.H. Bi, F.X. Xie, X.D. Zhao, Q. Chen, J.D. Xu and S.S. Ni, *Asian J. Chem.*, **16**, 137 (2004).
- 9. N.L. Hu, H.Z. Dong, Z.X. Huang and F.X. Xie, Asian J. Chem., 17, 1276 (2005).
- J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang and L.T. Kong, *Asian J. Chem.*, 18, 2365 (2006).

(Received: 31 August 2007; Accepted: 4 February 2008) AJC-6301