Asian Journal of Chemistry

Effects of Inoculation Bacteria on Chemical Content, Yield and Growth in Rocket (*Eruca vesicaria* subsp. sativa)

ATILLA DURSUN*, MELEK EKINCI and MESUDE FIGEN DÖNMEZ† Department of Horticulture, Faculty of Agriculture Atatürk University, Erzurum 25240, Turkey Fax: (90)(442)2360958; Tel: (90)(442)2312147 E-mail: atilladursun@hotmail.com; atilladursun@atauni.edu.tr

This study was conducted to determine the effects of inoculation bacteria on mineral content, yield and growth in rocket. Strains of bacteria, Burkholderia gladii BA-7, Pseudomonas putidae BA-8, Bacillus subtilis OSU-142 and MFD-5, Bacillus megatorium M3, Agrobacterium rubi A-1, A-16 and A-18, were used. The effects of the bacterial treatments on the plant nutrient elements of leaves were evaluated. The parameters of yield per m², average leaf number, leaf weight, leaf length, leaf stem diameter, leaf area, leaf dry matter and average root length, root weight and root dry matter were also determined. The effects of bacterial application on plant mineral contents were significant. Bacterial applications increased mineral contents of rocket leaves as compared to control treatment. All bacterial applications particularly affect on increasing in N, K, P, Zn, Fe, Mn, Na, Ca and Mg contents of plant. The effects of bacterial application on the parameters were also significant. The highest yield (4586.54 g/m²), average leaf weight (1.63 g), leaf length (27.48 cm), leaf stem diameter (2.06 mm), leaf area (93.57 cm²) and root weight (0.60 g) were obtained from Pseudomonas BA-7 applications as comparing to that of the other applications. The highest leaf number (8.23), leaf dry matter (6.70 %) and root dry matter (11.85 %) were determined in A-18, BA-142 and MFD-5 applications, respectively. The results of this study showed that especially Burkholderia gladii BA-7, Pseudomonas BA-8 and Bacillus OSU-142 have a great potential to increase the parameters of plant growth of rocket.

Key Words: Bacteria, Plant growth, Yield, Mineral content, Rocket.

INTRODUCTION

Vegetable production is getting increase in all around of the world. Turkey has favourable ecological conditions for vegetable growth and is

[†]Department of Plant Protection, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey.

3198 Dursun et al.

Asian J. Chem.

one of the most important vegetable producers in the world. Turkey is fourth important producer (25.3 million tones) country regarding of vegetable production in the world¹.

Vegetables commonly grown in Turkey today consist of annual crops including Solanaceous, Crucifers, Cucurbits, Bulb crops, Leguminous and other indigenous vegetable species. In terms of economic value, nutrition, consumers preference, general adaptability and extent of cultivation, the most commonly grown vegetable crops are tomato, watermelon, cucumber, pepper (hot and sweet), eggplant, squash, onion, snap bean, melon, salad vegetables, *etc*.

Intensive farming practices require extensive use of chemical fertilizers, which are costly and create environmental problems, for warranting high yield and quality. Hence, there has recently been a resurgence of interest in environmentally friendly, sustainable and organic agricultural practices^{2,3}. Because of the reason, uses of bio-fertilizers containing beneficial microorganisms instead of inorganic chemicals are positively known to affect on plant growth in terms of supplying of plant nutrients and may help to sustain environmental health and soil productivity^{3,4}.

A number of inoculated bacterial species mostly associated with the plant rhizosphere have been tested and determined to be beneficial for plant growth, yield and crop quality so far. They have been called plant growth promoting rhizobacteria (PGPR)' including the strains in the genera Acinetobacter Alcaligenes, Arthrobacter, Azospirillium, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Rhizo-bium and Serratia^{3,5-7}. These bacteria were previously reported as plant growth promoting bacteria and had potential bio-control agents against a wide range of bacterial and fungal pathogens causing economically important problems in agriculture^{3,8-12}. They affect on fixation of nitrogen¹³⁻¹⁵ and are one of the most plausible mechanisms of action affecting plant growth³. The reason is that nitrogen-fixing bacteria may be important for plant nutrition by increasing nitrogen uptake by the plants and playing as significant role as plant growth PGPR in the biofertilization of the crops^{16,17}. Many researchers determined that PGPR can stimulate growth and increase yield in pepper and tomato^{12,18}, in sugar beet^{19,20}, in spring barley²¹, in apricot^{11,22}, in raspberry²³ and in apple¹⁶. However, not much is known about promoting effects on yield, growth and nutrient contents of rocket vegetable species.

The objective of this study was to determine the effects of inoculation bacteria (*Burkholderia gladii* BA-7, *Pseudomonas putidae* BA-8, *Bacillus subtilis* OSU-142 and MFD-5, *Bacillus megatorium* M3, *Agrobacterium rubi* A-1, A-16 and A-18) on chemical content, yield and growth in rocket in unheated greenhouse conditions.

Vol. 20, No. 4 (2008)

EXPERIMENTAL

Strains of bacteria, *Burkholderia gladii* BA-7, *Pseudomonas putidae* BA-8, *Bacillus subtilis* OSU-142, MFD-5, *Bacillus megatorium* M3, *Agrobacterium rubi* A-1, A-16 and A-18, were obtained from Department of Plant Protection at Ataturk University. Bacteria were grown on nutrient agar (NA) for routine use and maintained in nutrient broth (NB) with 30 % glycerol at -80 °C for long-term storage. For this experiment, the bacterial strains were grown on nutrient agar. A single colony was transferred to 250 mL flasks containing nutrient broth and grown aerobically in flasks on a rotating shaker (95 rpm) for 48 h at 27 °C. The bacterial suspension was then diluted in sterile distilled water to a final concentration of 10^8 CFU mL⁻¹ and the resulting suspensions were used to treat rocket plants. The plants were sprayed with bacterial suspension (10^8 CFU mL⁻¹) at one week interval for three times after first true leaf development.

Unheated greenhouse experiment: The experiment was carried out on rocket (*Eruca vesicaria* subsp. sativa) in the Department of Horticulture at Ataturk University under unheated greenhouse condition in Erzurum, Turkey, in 2006. It was made based on a completely randomized design with four replicates.

The effect of the bacterial treatments on the plant nutrient elements of leaves was evaluated. Growth promoting effects of bacterial treatments were also evaluated by determining yield/m², average leaf number, leaf weight, leaf length, leaf stem diameter, leaf area, dry matter and average root length, root weight and dry matter.

Leaf analysis: In order to determine the mineral contents of plant shoot and root, plants samples were oven-dried at 68 °C for 48 h and then ground. The micro-Kjeldahl procedure was applied for determination of N. K⁺, Ca²⁺ and Mg²⁺ were determined after wet digestion of dried and ground sub-samples in a H₂SO₄-Se-salisilic acid mixture. In the diluted digests, phosphorus was measured spectrophotometrically by the indophenolblue method and after reaction with ascorbic acid. K⁺ and Ca²⁺ were determined by flame photometry, Mg²⁺, Mn, Zn and Cu by atomic absorption spectrometry using the method of AOAC²⁴.

Data analysis: All data were subjected to a one-way analysis of variance (ANOVA) and separated by Duncan's multiple range tests using SAS statistical software²⁵.

RESULTS AND DISCUSSION

The effects of bacterial application on plant mineral (N, K, P, Zn, Fe, Mn, Na, Ca and Mg) contents were significant at p < 0.05 and 0.01 (Table-1). In present study, we determined that bacterial applications increased mineral contents of rocket leaves as compared with control treatment. All bacterial

3200 Dursun et al.

applications particularly affect on increasing in N, K, P, Zn, Fe, Mn, Na, Ca and Mg contents of plant. The highest N, K, P, Zn, Fe, Mn, Na, Ca and Mg contents were obtained from A-16 (4.62 %), BA-7 (4571.25 ppm), MFD-5 (287.65 ppm), M3 (47.03 ppm), BA-8 (919.30 ppm), BA-8 (4.75 ppm), MFD-5 (1241.50 ppm), BA-8 (9601.00 ppm) and A-18 (1309.00), respectively. Bacterial strains effecting on Cu were not significant (Table-1). The higher mineral contents in the bacteria treated plant may have resulted from the producing plant hormone such as auxins, cytokinins, gibberellins and ethylene¹⁶ ability of these bacteria, as reported that many kinds of bacteria had given same results on different plant species in previous studies^{8,11,18,23}. Marschner¹⁷ and Aslantas *et. al.*¹⁶ stated that increasing mineral contents in plants results in greater uptake of nutrient elements from soil. This evidence confirms the data showing that the quantity of N, P, K, Zn, Fe, Mn, Na, Ca and Mg was significantly or relatively increased in the bacteriatreated plants, which may be explained by higher concentration of nitrogen and phosphorus stimulated by bacterial application and resulted from the producing plant hormone.

Plant growth: Growth promoting effects of bacterial application on yield, average leaf number, leaf weight, leaf length, leaf stem size, leaf area, leaf dry matter and average root length, root weight and root dry matter of roka were significant at p < 0.01 (Table-2). The highest yield (4586.54 g/m²) was obtained from *Pseudomonas* BA-7 applications as comparing to that of the other applications and average leaf weight (1.63 g), leaf length (27.48 cm), leaf stem size (2.06 mm), leaf area (93.57 cm²) and root weight (0.60 g) were also obtained from Pseudomonas BA-7 applications when comparing to the other treatments. The highest leaf number (8.23), leaf dry matter(6.70 %) and root dry matter (11.85 %) were determined in A-18, BA-142 and MFD-5 applications, respectively. This is the first report on growth promoting effect of bacterial application on plant growth parameters of rocket. However, similar reports were determined in different plant species. Researchers stated that bacterial applications including Pseudomonas and Bacillus strains can stimulate growth and increase yield in pepper and tomato^{12,18}, in sugar beet^{19,20}, in spring barley²¹, in apricot^{11,22}, in raspberry²³ and in apple¹⁶. The reason of growth promoting effect of bacterial applications on plant growth is that they affect on fixation capacity of nitrogen¹³⁻¹⁵ and are one of the most plausible mechanisms of action affecting plant growth³. The used bacterial strains showed the same results in our findings. Thus, the present finding is good agreement to previous studies mentioned above.

Conclusion

The effects of bacterial applications depend on the crop species. Bacterial application is safe, effective and easily adopted by farmers. In terms of first report on rocket, the results of this study showed that

	Mg (ppm)	1292.50ab†	1298.00ab	1298.50ab	1292.50ab	1287.00b	1309.00a	1298.00ab	1292.50ab	1298.00ab	5.33	STEM SIZE,	Root dry matter (%)	9.56c‡	10.96ab	11.50a	10.15bc	9.90bc	7.94d	9.86bc	11.65a	11.85a	0.34	
TABLE-1 EFFECTS OF BACTERIAL APPLICATIONS ON PLANT CHEMICAL CONTENTS OF LEAVES IN ROCKET	Ca (ppm)	8918.00cd‡	8683.00d	9034.25bcd	9142.75abcd	9601.00a	9435.50abc	9352.00abc	9518.50ab	9350.00abc	156.80	IGTH, LEAF ATTER	Average root weight (g)	$0.31d_{4}$	0.31d	0.44bc	0.60a	0.51b	0.35cd	0.30d	0.41c	0.32d	0.03	
	(-							JEAF LEN DRY MA	Average root length (cm)	11.67d‡	12.33c	13.60a	13.27ab	11.63d	12.93b	11.98cd	13.30ab	13.08ab	0.20	
	i) Na (ppm	912.30b†	1198.63a	1237.00a	1117.20ab	1165.18a	1220.93a	1209.78a	1192.40a	1241.50a	78.57	EIGHT, I HT AND	Leaf dry matter (%)	5.88cd‡	ab)a	а	6.15bc	5.65d	5.85cd	6.29abc	6.37ab		
	Mn (ppm)	3.57b†	3.80ab	4.05ab	3.33b	4.75a	3.80ab	3.80ab	4.12ab	3.80ab	0.29	, LEAF W.				6.70a 6.61a	6.61a							cant.
	Cu (ppm)	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	NS	NUMBER, NGTH, RO	f Average leaf area (cm^2)	64.96b‡	68.75b	77.15b	93.57a	89.76a	74.98b	94.66a	75.70b	75.09b	3.83	Not Signifi
	Fe (ppm)	418.84c‡	542.95bc	560.03bc	464.65bc	919.30a	1139.38a	547.58bc	584.32bc	680.75b	75.45	TABLE-2 RAGE LEAF	Average leaf stem size (mm)	1.46d‡	1.81c	1.85bc	2.06a	2.04ab	1.93abc	1.74c	1.82c	1.84c	0.06	< 0.01; NS =
	Zn (ppm)	32.02d‡	47.03a	37.11c	36.49c	39.62bc	47.56a	39.20bc	39.31bc	41.48b	1.18	(IELD, AVE ND AVERAC	Average leaf length (cm)	22.05c‡	25.91ab	25.97ab	27.48a	26.60ab	24.00bc	26.53ab	23.83bc	24.60abc	0.89	nportant at p
	P (ppm)		257.92cd	259.91bcd	250.56d			281.70abc	285.99ab	287.65a	8.46	TABLE-2 TERIAL APPLICATIONS ON YIELD, AVERAGE LEAF NUMBER, LEAF WEIGHT, LEAF LENGTH, LEAF STEM SIZE, LEAF AREA, DRY MATTER AND AVERAGE ROOT LENGTH, ROOT WEIGHT AND DRY MATTER	Average leaf Average leaf Average leaf number weight (g) length (cm)	1.05d‡	1.56ab	1.39abcd	1.63a	1.55ab	1.10cd	1.41abc	1.55ab	1.28bcd	0.11	Significantly important at p < 0.05; $Significantly important at p < 0.01$; NS = Not Significant.
	K (ppm)	;00b‡	.75a	.25a	.25a		25a	25a	25a	.00a	.60	AL APPLIC/ 7 AREA, DRY	Average leaf number	6.80de‡	6.70de		æ	7.73ab	8.23a	7.08cd	7.58bc	6.33e	0.19	tt p < 0.05; ‡S
	N(%)	4.03c‡ 3				4.45ab 4						F BACTERI LEAF	Yield/m ² (g)	2660.58d‡	3314.42bcd	3027.88bcd	4586.54a	3574.04bc	3069.23bcd	3823.08b	2720.77cd	3000.00bcd	251.10	v important a
	Applications	Control	M3	BA-142	BA-7	BA-8	A-18	A-16	A-1	MFD5	LSD (0.05)	EFFECTS OF BACTERIAL LEAF AR	Applications	Control	M3	1 2			A-18			MFD5	LSD (0.05)	†Significantly

Vol. 20, No. 4 (2008)

Effect of Bacteria on Rocket 3201

3202 Dursun et al.

Asian J. Chem.

Burkholderia gladii BA-7, *Pseudomonas putidae* BA-8, *Bacillus subtilis* OSU-142 and MFD-5, *Bacillus megatorium* M3, *Agrobacterium rubi* A-1, A-16 and A-18 have a great potential to increase the yield, growth and mineral contents of rocket plant. They also have the potential to benefit such farmers in many ways and hence, its importance has been recognized by farmers as well as researchers. Therefore, they may be put to good use as biofertilizer for fruit and vegetable production in sustainable and ecological agricultural systems.

REFERENCES

- 1. FAO, Statistical Database, www.fao.org. (2005).
- A. Esitken, S. Ercisli, H. Karlidag and F. Sahin, Proceedings of the International Scientific Conference of Environmentally Friendly Fruit Growing, Tartu-Estonia, pp. 90-97 (2005).
- 3. A. Esitken, L. Pirlak, M. Turan and F. Sahin, Scientia Horticult., 110, 324 (2006).
- 4. P.F. O'Connell, Outlook Agric., 21, 5 (1992).
- 5. H. Rodriguez and R. Fraga, *Biotechnol. Adv.*, **17**, 319 (1999).
- 6. A.V. Sturz and J. Nowak, Appl. Soil Ecol., 15, 183 (2000).
- 7. P. Sudhakar, G.N. Chattopadhyay, S.K. Gangwar and J.K. Ghosh, *J. Agric. Sci.*, **134**, 227 (2000).
- 8. R. Cakmakci, F. Kantar and F. Sahin, J. Plant Nutr. Soil Sci., 164, 527 (2001).
- 9. D. Cuppels, F. Sahin and S.A. Miller, *Phytopathology*, **89**, 19 (1999).
- 10. A. Esitken, H. Karlidag, S. Ercisli and F. Sahin, Gartenbauwissenschaft, 67, 139 (2002).
- 11. A. Esitken, H. Karlidag, S. Ercisli, M. Turan and F. Sahin, *Aust. J. Agric. Res.* 54, 377 (2003).
- R. Kotan, F. Sahin, E. Demirci, A. Ozbek, C. Eken and S.A. Miller, *Phytopathology*, 89, 41 (1999).
- 13. J. Dobereiner, Soil Biol. Biochem., 29, 771 (1997).
- 14. M.Y. Reis, F.L. Olivares and J. Dobereiner, *World J. Microbiol. Biotechnol.*, **10**, 101 (1994).
- C.P. Vance, Proceedings of a NATO Advanced Research Workshop, Poznan, Poland, Springer-Verlag, Berlin, Germany, pp. 179-185 (1997).
- 16. R. Aslantas, R. Çakmakçi and F. Sahin, Scientia Horticult., 111, 371 (2007).
- 17. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, Londonm, edn. 2 (1995).
- F. Sahin, R. Kotan, E. Demirci and S.A. Miller, *Ataturk Universitesi Ziraat Fakultesi Dergisi*, 31, 11 (2000).
- 19. R. Cakmakci, F. Donmez, A. Aydin and F. Sahin, Soil Biol. Biochem., 38, 1482 (2006).
- 20. E. Elkoca, F. Kantar, F. Sahin and F. Dönmez, Türkiye 4. Tarla Bitkileri Kongresi, pp. 285-289, 17-21 Eylül, Tekirdag (2001).
- 21. A. Salantur, A. Ozturk, S. Akten, F. Sahin and F. Donmez, Plant Soil, 275, 147 (2005).
- 22. M. Altindag, M. Sahin, A. Esitken, S. Ercisli, M. Guleryuz, M.F. Donmez and F. Sahin, *Biological Control*, **38**, 369 (2006).
- 23. E. Orhan, A. Esitken, S. Ercisli, M. Turan and F. Sahin, *Scientia Horticult.*, **111**, 38 (2006).
- 24. AOAC, Washington, DC (1990).
- 25. SAS Institute, SAS Institute, Cary, NC (1982).

(Received: 27 September 2007;

Accepted: 19 January 2008)

AJC-6233