Asian Journal of Chemistry

Vol. 20, No. 4 (2008), 3304-3306

NOTE

Synthesis and Antifungal Activities of 2-Amino-3-cyano-4-(2-aryl)-8-(2-arylidine)cyclohexyl pyridines Derivatives

PRAVEEN TRIPATHI* and SUDHA PANDEY Department of Chemistry, St. Andrews College, Gorakhpur-273 001, India E-mail: praveen_chem 97@rediffmail.com

The compounds 2-amino-3-cyano-4-(2-aryl)-8-2-(arylidine)cyclohexyl pyridines were synthesized. The newly synthesized compounds shows antifungal activity against *Aspergillus niger* and *Asperigillus flavus*.

Key Words: Synthesis, Antifungal activities, Cyclohexyl pyridines derivatives.

Pyridine derivatives have been reported to have fungicidal^{1,2}, insecticidal³, herbicidal⁴ and bactericidal properties⁵. An intermediate 2,6-*bis*-(4-pyridyl methylene)cyclohexanone was prepared from cyclohexanone. This intermediate on reaction with dicyanomethane and ammonium acetate gives 2-amino-3-cyano-4-(2-pyridyl)-8-(2-pyridylidine)cyclohexyl pyridines.

Melting points were determined in open capillaries and are uncorrected. IR (KBr) spectra were recorded on a Perkin-Elmer 1800 (FTIR) spectrometer and ¹H NMR spectra (DMSO) were recorded on a DRX-300 (300 MHz) spectrometer using TMS as internal standard.

Synthesis of 2, 6-*bis***-(4-pyridyl methylene)cyclohexanone (1a):** A mixture of cyclohexanone (0.1 M, 9.8 mL), 2 mole of pyridylaldehyde (0.1 M, 16.4 mL) and 2 mole of KOH (11.2 g) in methanol solution is refluxed for 4 h. The solid compound was filtered, washed with water, dried and crystallized from aq. ethanol, m.p. 130 °C, yield (71 %). Other intermediate **1b-c** were prepared by similar method.

Synthesis of 2-amino-3-cyano-4-(2-pyridyl)-8-(2-pyridylidine)cyclohexyl pyridines (2a): A requisite 2,6-*bis*-(4-pyridyl methylene)cyclohexanone (0.01 M, 2.54 g), dicyanomethane (0.01 M, 0.66 mL) and 8 mol of CH₃COONH₄ (0.01 M, 6.16 mL) were refluxed for 4 h. The solid product obtained was poured into water after evaporation of methanol. The compound thus obtained was washed, filtered and dried, m.p. 120 °C, yield (52 %), (Scheme-I). IR (KBr, ν_{max} , cm⁻¹): 3400, 3250 (NH₂), 2950 (C-H), 2200 (C=N), 1560, 1500, 1450 (aromatic and conjugated C=C). ¹H NMR (DMSO-*d*₆) δ : 1.60 (m, 2H, >C=C-CH-CH₂-), 1.92 (t, 4H, >C=C-CH₂-), 2.3 (s, 1H, C=C-CH), 6.0-7.8 (m, 5H, aromatic and conjugated olefinic proton) Vol. 20, No. 4 (2008) 2-Amino-3-cyano-4-(2-aryl)-8-(2-arylidine)cyclohexyl pyridines 3305

Anal. (%) Calcd. for C₂₁H₁₉N₅: C, 73.90; H, 5.57; N, 20.52; Found C, 73.79, H, 5.51; N, 20.47. Similarly compounds 2b-c were also synthesized.

Scheme-I

COMPOUNDS 2b-c Elemental analysis (%): Compd./ m.p. (°C) / Ar/R Found (Calcd.) (m.f.) Yield (%) С Η Ν 115 71.35 5.30 13.12 **2b** 1 O $C_{19}H_{17}O_2N_3$ (58) (71.47)(5.32)(13.16)CHO 118 64.92 4.80 11.90 **2**c 1 S $C_{19}H_{17}S_2N_3$ (57)(64.95) (4.84)(11.96)CHO

TABLE-1 PHYSICAL AND ELEMENTAL ANALYSIS DATA OF

Antifungal activity: All the newly synthesized compound 2a-c were screened for their antifungal activity against Aspergillus niger and Aspergillus flavus. The results were showed in Table-2.

3306 Tripathi et al.

Asian J. Chem.

ANTIFUNGAL ACTIVITY OF COMPOUNDS 2a-c							
Compd.	Ar/R	Average percentage inhibition (ppm) after 96 h					
		A. niger			A. flavus		
		Concentration					
		1000	100	10	1000	100	10
2a	Сно	67	54	42	68	60	50
2b	ОСНО	65	55	44	66	56	46
2c	СНО	68	58	47	69	60	51
	Bavistin	96	91	90	92	93	91

TABLE-2

ACKNOWLEDGEMENT

The authors are thankful to CDRI (Lucknow) for providing elemental and spectral data.

REFERENCES

- 1. H. Ten, P. Webb and B. Shirley, Eur. Pat., 104,691; Chem. Abstr., 101, 23355 (1984).
- 2. K. Richardson and J.P. Whittle, Eur. Pat., 102,727; Chem. Abstr., 101, 7045f (1984).
- 3. C.P. Singh, *Chem. Abstr.*, **101**, 171163p (1984).
- 4. N. Ryuzo, H. Takahiro and S. Nobuyuki, *Japan Kokai Tokkyo Koha*, **61**, 280, 477; *Chem. Abstr.*, **106**, 176175g (1987).
- 5. J. Matsumoto, Y. Nishimura and S. Nakamura, Chem. Abstr., 101, 55088u (1984).

(Received: 1 September 2007; Accepted: 21 January 2008) AJC-6251