NOTE

Synthesis and Antifungal Activity of Some Substituted Pyrazolo[4,5-e]pyrimidines Derivatives

PRAVEEN TRIPATHI

Department of Chemistry, St. Andrews College, Gorakhpur-273 001, India E-mail: praveen_chem97@rediffmail.com

1-Aroyl-5-aryl-4-oxo-6-thio-pyrazolo[4,5-e]pyrimidines have been synthesized. The newly synthesized compounds showed antifungal activity against *Aspergillus niger* and *Aspergillus flavus*.

Key Words: Pyrazolo[4,5-e]pyrimidines derivatives, Antifungal activities, Synthesis.

Pyrimidines derivatives have been reported as antihypertensive drugs¹⁻³, herbicides⁴, pesticides⁵, antitumor^{6,7}, antimalarial⁸, antiviral⁹ and anti-inflammatory¹⁰ agents. Similarly pyrazolo derivatives with antimicrobial, antiviral and anticancer properties have been reported¹¹.

Melting points were determined in open capillaries and are uncorrected. IR (KBr) spectra were recorded on a Perkin-Elmer 1800 (FTIR) spectrometer and ¹H NMR spectra (CDCl₃) were recorded on a DRX-300 (300 MHz) spectrometer using TMS as internal standard. The purity of synthesized compounds was chekced by TLC using silica gel-G and spots were exposed in iodine vapour.

Synthesis of 1-(4-chlorobenzoyl)-4-carboethoxy-5-aminopyrazolone (**1a**): A mixture of ethyl-2-cyano-3-ethoxy acrylate (0.05 mol, 8.45 g), hydrazide (RCONHNH₂) (0.05 mol, 8.5 g), were refluxed in methanol for 4 h. Upon cooling solid product obtained. It was filtered, washed, dried and crystallized by acetone, m.p. 135 °C (yield 69 %); ¹H NMR (CDCl₃): δ 1.3 (t, 3H, OCH₂CH₃), 4.2 (q, 2H, OCH₂-), 7.4-8.5 (m, 5H, ArH), IR (KBr, ν_{max} , cm⁻¹): 3300 (N-H str.) 1687 (C=O ester), 1606 (C=O benzoyl), 1480, 1560, 1597 (C=C aromatic). Anal. calcd. for C₁₃H₁₂N₃O₃Cl: C, 53.24; H, 4.09; N, 14.33; Found: C, 53.20; H, 4.05; N, 14.30. Similarly compounds **1b-g** were prepared by the same method.

Synthesis of 1-(4-chlorobenzoyl)-5-phenyl-4-oxo-6-thiopyrazolo- [4,5-e]pyrimidines (2a): The requisite **1a** (0.01 mol, 2.9 g) and phenyliso-thiocyanate (0.01 mol, 1.19 mL) in 1:1 molar ratio in methanol were refluxed for 5 h. On cooling, the mass was poured in cold water. The product thus obtained was filtered, washed, dried and crystallized from acetone,

m.p. 220 °C (yield 71 %); IR (KBr, v_{max} , cm⁻¹): 3292 (N-H str), 1687 (C=O ester), 1637 (C=O, benzoyl), 1483, 1562, 1598 (C=C, ArH), 1344 (C-N str), 1228 (C=S str), 1 H NMR (CDCl₃): δ = 1.2 (t, 3H, OCH₂CH₃), 4.3 (q, 2H, OCH₂-), 7.9-8.2 (m, 5H, Arh), 8.7 (s, 1H, NH). Anal. calcd. for C₁₈H₁₁N₄O₂SCl: C, 56.24, H, 2.87; N, 14.65; Found: C, 56.50; H, 2.84; N, 14.62, Similarly, compounds **2b-l** were synthesized. The analytical data are given in Table-1.

TABLE-1
PHYSICAL AND ELEMENTAL ANALYSIS
DATA OF COMPOUNDS **2b-1**

Compd.	m.p. (°C)	Yield (%)	m.f.	Analysis (%), Found (Calcd.)		
				С	Н	N
2b	130	70	$C_{18}H_{11}N_4O_2SC1$	56.50	2.83	14.62
				(56.54)	(2.87)	(14.65)
2 c	105	72	$C_{18}H_{10}N_4O_2SCl_2$	51.89	2.36	13.42
				(51.92)	(2.40)	(13.47)
2d	200	73	$C_{19}H_{14}N_4O_2S$	62.93	3.83	15.40
				(62.98)	(3.86)	(15.46)
2e	180	74	$C_{19}H_{12}N_4O_3SCl_2$	52.50	2.73	12.86
				(52.53)	(2.76)	(12.90)
2f	120	75	$C_{19}H_{14}N_4O_3S$	60.28	3.65	14.80
				(60.31)	(3.70)	(14.81)
2g	200 76	76	$C_{20}H_{15}N_4O_2SC1$	58.50	3.60	13.62
-8		20-15-4-2-	(58.53)	(3.65)	(13.65)	
2h	125	74	$\mathrm{C_{20}H_{15}N_4O_2SCl}$	58.50	3.60	13.62
				(58.53)	(3.65)	(13.65)
2i	97	73	$C_{20}H_{14}N_4O_2SCl_2$	54.00	3.09	12.59
				(54.05)	(3.15)	(12.61)
2j	185 6	69	$C_{21}H_{18}N_4O_2S$	56.47	4.00	12.50
				(56.50)	(4.03)	(12.55)
2k	150	68	$C_{21}H_{16}N_4O_3SCl_2$	53.12	3.34	11.79
				(53.16)	(3.37)	(11.81)
21	125	71	$C_{22}H_{18}N_4O_3S$	63.09	4.28	13.35
				(63.15)	(4.30)	(13.39)

Antifungal activity: All the synthesized 4-oxo-6-thio-pyrazolo[4,5-e] pyrimidines (2a-l) were tested *in vitro* antifungal activities against *A. niger* and *A. flavus* by the paper disc diffusion method¹². Salicylic acid was used as reference compounds in antifungal activity. Among the synthesized pyrazolo-[4,5-e]pyrimidines, 2a, 2c, 2d, 2e and 2i showed promising antifungal activity.

1656 Tripathi Asian J. Chem.

ACKNOWLEDGEMENT

The author is thankful to CDRI, Lucknow for elemental and spectral analysis.

REFERENCES

- 1. K. Gewald, Chem. Ber., 99, 1002 (1966).
- 2. A.B. Olter, S.S. Saluja and J.J. Fox, J. Org. Chem., 37, 2858 (1972).
- 3. Sanyo Co. Ltd., Japan Kokoi Tokkyo Koho, 8168,682, Chem. Abstr., 95, 132950 (1981).
- 4. W.T. Zimmermann, Eu Pat. 46677, Chem. Abstr., 96, 217874 (1982).
- 5. H. Walter, PCT Int. Appl. WO 9733,890, Chem. Abstr., 127, 293243 (1997).
- R.G. Melik, Ogandzhanyan, A.S. Gapoyan and V.E. Kachatryam, Sint Geterosiki Seodin, 12, 24 (1981); Chem. Abstr., 95, 150553 (1981).
- 7. S.A. Swelam, *Indian J. Heterocycl. Chem.*, **8**, 147 (1998).
- 8. D.S. Sanghavi, D.T. Chaudhari and P.P. Gudadhe, Bull. Falkine Inst., 9, 51 (1981).
- 9. C. McGuigan, C. Yornold, G. Jones, J. Balzarini and E. Declerca, PCT Int. Appl. WO 9849, 177; *Chem. Abstr.*, **130**, 4026 (1999).
- Y. Nunokawa, T. Nakatsuka, M. Saitoh and K. Abe, PCT Int WO 0005, 234; *Chem. Abstr.*, 132, 137399 (2000).
- 11. J.V. Greenhill, Comp. Heterocycl. Chem., 5, 305 (1984).
- 12. H.W. Seeley and P.J. Denmark Van, Microbes in Action, W.H. Freeman and Co., USA (1972).

(Received: 5 June 2007; Accepted: 15 October 2007) AJC-6024