Asian Journal of Chemistry

Vol. 20, No. 2 (2008), 1651-1653

NOTE

Composition of Essential Oil of *Carthamus glaucus* Bieb. subsp. glaucus

ZUHAL TOKER* and CUMALI KESKIN[†] Department of Biology, Faculty of Art and Sciences Dicle University, 21280 Diyarbakir, Turkey E-mail: ztoker@dicle.edu.tr

The essential oil of water distilled aerial parts of *Carthamus glaucus* Bieb. subsp. glaucus (*Compositae*) was analyzed by GC/MS. 23 Components were characterized representing 87.3 % of total component in oil sample. The major components were linalool (38.5 %), longifolene (6.8 %) and caryophyllene oxide (6.2 %).

Key Words: *Carthamus glaucus*, *Compositae*, Essential oil, Linalool, Longifolene, Caryophyllene oxide.

The genus *Carthamus* (*Compositae*) is represented in the flora of Turkey by 8 species, is usually spiny branched annuals rarely pereannial¹. Among this species *Carthamus glaucus*, *Carthamus persicus* and *Carthamus tinctorus* are traditionaly used as a medicinal plant^{2,3}. *C. tinctorus* is used a food colorant, dye and flavouring agent in orient countries⁴. There are only a few phytochemical and biological activity reports on some *Carthamus species*⁵⁻⁹. Essential oil studies on *Carthamus* species quite scarce¹⁰. This is the first report on the chemical composition of the essential oil of *Carthamus glaucus* subsp. glaucus.

Plant material *C. glaucus* Bieb. subsp. glaucus was collected in Elazig in June 2002. Air dried flowering aerial parts of the plant were subjected water distillation using a Cockings and Middleton's apparatus¹¹.

The oils were analyzed on a Agillent 6890 GCD system. An Innowax (polyethylene glycol phase) FSC column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film tickness 0.32 µm) was used with helium as the carrier gas. Injector temperature was 250 °C. Split flow was 1 mL/min. The GC oven temperature was kept at 60 °C for 10 min and programmed to 220 °C at a rate of 4 °C/min and then kept constant at 220 °C for 10 min to 240 °C at a rate of 1 °C/min. MS were taken at 70 eV and a mass range of 35-425. Component identification was carried out by spectrometric electronic libraries (Wiley, Nist 98.1 and Nist1.L) and published retention indices¹². Retention indices (RI) were

[†]Dicle University, Mardin Health College, 47100 Mardin, Turkey.

1652 Toker et al.

calculated using GC data of a saturated aliphatic hydrocarbon homologous series within C_8 to C_{22} , performed in the same column and conditions as used in the GC analysis for the essential oils.

The steam distillation described of the aerial parts of *C. glaucus* subsp. glaucus gave yellowish oils with a yield of 0.8 %. 23 Compounds were identified in the essential oil and the composition is given in Table-1.

RI	Compound	Percentage
1275	Terpinolene	1.8
1430	E-3-caren	2.1
1515	Camphor	0.8
1553	Linalool	38.5
1580	β-Caryophyllene	4.0
1574	Longifolene	6.8
1595	Bornyl acetate	0.6
1615	Caryophyllene	2.4
1625	Myrtenal	1.6
1640	α-Cedrene	1.8
1665	Alloaromadendrene	1.2
1698	Borneol	3.0
1722	α-Farnesene	2.1
1759	trans-Carvyl acetate	1.0
1775	β-Sesquiphellandrene	0.7
1790	γ-Cadinene	1.2
1995	Caryophyllene oxide	6.2
2022	α-Bisabolol	1.3
2030	Caryophyllene alcohol	2.2
2150	Spathulenol	2.1
2200	Thymol	3.8
2231	Valerianol	0.8
2235	α-Eudesmol	1.3
	Total identified	87.3

TABLE-1 PERCENTAGE COMPOSITION OF THE OIL OF *C. glaucus* Bieb. subsp. *glaucus*.

In the oil of *C. glaucus* subsp. glaucus 23 component were characterized representing 87.3 % of the oil with 38.5 % linalool, 6.8 % longifolene and 6.2 % caryopyllene oxide as major contituents.

Result also showed that the monoterpene hydrocarbons constituted the major portion of the oil linalool (38.5 %), thymol (3.8 %), borneol (3 %), caren (2.1 %) and terpinolene (1.8 %) as major constituents.

Vol. 20, No. 2 (2008) Essential Oil of Carthamus glaucus Bieb. subsp. glaucus 1653

Sesquiterpene hydrocarbons (33.4 %) were found to contain longifolene (6.8 %), caryophyllene oxide (6.2 %), β -caryophyllene (4 %) and caryophyllene (2.4 %) as major constituents.

REFERENCES

- 1. F.K. Kupicha, in ed.: P.H. Davism, *Carthamus*, Flora of Turkey and the East Aegean Islands, Edinburg University Press, Edinburg, Vol. 5, p. 593 (1975).
- 2. Environment Foundation of Turkey, Endemic and Medicinal Plants of GAP Area, Environment Foundation of Turkey Publ. No. 143, Ankara (2001).
- 3. Z.H. Li and X.H. Tu, Tradit. Chin Drug Res. Clin. Pharmacol., 16, 153 (2005).
- 4. G.H. Amin, Popular Medicinal Plants of Iran, Health Ministry Pres, Tehran, p. 118 (1991).
- 5. A. San Feliciano, M. Medarde, B. Del Rey, J.M.M. Del Corral and A.F. Barrera, *Phytochemistry*, **29**, 645 (1990).
- 6. M.E. Amer, R.M. Abdallah, J. Jakupovic and N.A.A. Selam, *Phytochemistry*, **28**, 1263 (1989).
- 7. Z. Toker, Phytochemical Researches on *Carthamus glaucus* Bieb. subsp. glaucus. Unpublished Master Thesis, Dicle University, Diyarbakir (1997).
- 8. J. Benedi, I. Iglesias, J. Manzanares and F. Zaragoza, *Planta Med. Phytother*, **20**, 25 (1986).
- R. Taskova, M. Mitova, H. Najdenski, I. Tzvetkova and H. Duddeck, *Fitoterapia*, 73, 540 (2002).
- D.J. Lacey, N. Wellner, F. Beadoin, J.A. Napier and P.R. Shewrey, *Biochem. J.*, 334, 469 (1998).
- 11. Cocking and Middleton, Steam Distillation of Plant Material, *Quart. J. Pharm. Pharmacol.*, **8**, 435 (1935).
- 12. N.W. Davies, J. Chromatogr., 503, 1 (1990).

(Received: 24 April 2007; Accepted: 15 October 2007) AJC-6023