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Calculation of the Symmetry of C24 Fullerene
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In this paper we present some MATLAB and GAP
programs and use them to find the automorphism group of
the Euclidean graph of the C24 fullerene. It is well known to
associate an Euclidean graph to a molecule. Balasubramanian
computed the Euclidean graphs and their automorphism
groups for benzene, eclipsed and staggered forms of ethane
and eclipsed and staggered forms of ferrocene. It is also proved
that algorithm, which is useful for finding symmetry of
molecules. Using this algorithm, a new simple method is
described, by means of which it is possible to calculate the
automorphism group of weighted graphs. We apply this
method to compute the symmetry of fullerene C24.
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INTRODUCTION

Let G = (V,E) be a simple graph. G is called a weighted graph if each
edge e is assigned a non-negative number w(e), called the weight of e. An
unweighted graph G can be regarded as a weighted graph in which for all
edges e ∈ E(G), w(e) = 1. Euclidean graph of a molecule is a complete
weighted graph in which the edges are weighted by the Euclidean
distances of vertices.

An automorphism of a weighted graph G is a permutation g of the
vertex set of G with the property that, (i) for any vertices u and v, g(u) and
g(v) are adjacent if u is adjacent to v (ii) for every edge e, w(g(e)) = w(e).
The set of all automorphisms of a weighted graph G, with the operation of
composition of permutations, is a permutation group on V(G), denoted
Aut(G).

By symmetry we mean the automorphism group symmetry of a graph.
The symmetry of a graph, also called a topological symmetry, accounts
only for the bond relations between atoms and does not fully determine
molecular geometry. The symmetry of a graph does not need to be the
same as (i.e. isomorphic to) the molecular point group symmetry. How-
ever, it does represent the maximal symmetry which the geometrical real-
ization of a given topological structure may posses.



It was shown by Randic1,2 that a graph can be depicted in different
ways such that its point group symmetry or three dimensional perception
may differ, but the underlying connectivity symmetry is still the same as
characterized by the automorphism group of the graph. However, the
molecular symmetry depends on the coordinates of the various nuclei which
relate directly to their three dimensional geometry. Although the symme-
try as perceived in graph theory by the automorphism group of the graph
and the molecular group are quite different, it was shown by Subramanian3

that the two symmetries are connected.
In this paper, we consider only weighted graphs. The motivation for

this study is already outlined by various workers3-16. Our notation is stan-
dard and taken mainly from the previous reports17-19.

COMPUTATIONAL METHOD

In this section we first describe some notation, which will be kept
throughout. Let G be a group and N be a subgroup of G. N is called a
normal subgroup of G, if for any g∈G and x∈N, g-1xg∈N. If H is another
normal subgroup of G such that H∩N = {e} and G = HN = {xy | x∈H,
y∈N}, then we say that G is a direct product of H and N denoted by H × N.
A group with no proper non-trivial normal subgroup is called simple group.
Suppose X is a set. The set of all permutations on X, denoted by SX, is a
group which is called the symmetric group on X. In the case that, X = {1,
2,…, n}, we denote SX by Sn or Sym(n).

In recent years, a rapid spread of interest in the understanding, design
and even implementation of group theoretical algorithms. These are gradu-
ally becoming accepted both as standard tools for a working group theore-
tician, like certain methods of proof and as worthwhile objects of study,
like connections between notions expressed in theorems.

Our computations of the symmetry properties of molecules were car-
ried out with the use of GAP20. GAP stands for Groups, Algorithms and
Programming. The name was chosen to reflect the aim of the system, which
is a group theoretical software for solving computational problems in com-
putational group theory. This software was constructed by GAP’s team in
Aachen. GAP is a free and extendable software package. The term extend-
able means that you can write your own programs in the GAP language
and use them in just the same way as the programs which form part of the
system (the “library”). More information on the motivation and develop-
ment of GAP to date can be found on GAP web page on http://www.gap-
system.org. GAP contains a large library of functions, which are important
for the calculations in this paper.
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GAP contains several functions for working with finite groups. For the
sake of completeness, we describe some of these functions which are use-
ful throughout. Let a1, a2, …, ar are permutations of {1,2,…,r}. The com-
mand “Group(a1,a2,…,ar)” computes the group generated by permutations
a1, a2, …, ar. For two groups A and B, the commands “Size(A)”, “Genera-
tors of Group(A)” and “Intersection(A,B)” compute the cardinality of the
set A, a generator set for A and intersection of A and B, respectively.
Finally the command “IsSimple(A)” determines whether or not A has a
non-trivial proper normal subgroup. In this paper, we use freely these func-
tions and the reader is encouraged to consult the manual of GAP20 and
work of Ashrafi et al.14-16,21.

Consider the equation (Pσ)tAPσ = A, where A is the adjacency matrix
of the weighted graph G. Suppose Aut(G) = {σ1, σ2,…, σm}. The matrix SG

= [sij], where sij = σi(j) is called a solution matrix for G. Clearly, for com-
puting the automorphism group of G, it is enough to calculate a solution
matrix for G. The second author16 proved a result that is useful for comput-
ing symmetry of molecules. Using this result, Lemma 1 and its Corollary,
we present a MATLAB program22 for computing a solution matrix for the
automorphism group of Euclidean graphs.

A MATLAB Program for computing the symmetries of molecules

n=length(a);
for i=1:n-1

for j=i+1:n
b(i,j)=norm(a(i,:)-a(j,:));

end
end

b(n,n)=0;
b=b+b';

function y=halat(s,a)
t=1:length(a);
m=length(s);
t(s)=[];
j=0;

for i=t
if min(min(a(1:m+1,1:m+1)==a([s,i],[s,i])))==1

j=j+1;
y(j)=i;

end
end

function s=hazf(s)
m=size(s);
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for i=m(1):-1:1
if min(s(i,:))==0

s(i,:)=[];
end

end

function s=jaigasht(a)
m=length(a);

for i=1:m
s(i,1)=i;

end
for j=2:m

n=size(s);
k=0;

for i=1:n(1)
y=[halat(s(i,:),a)];

for r=1:length(y)
b(r+k,1:n(2)+1)=[s(i,:),y(r)];

end
k=k+length(y);

end
s=b;
s=hazf(s);

end
b=0;
n=size(s);

for i=1:n(1)
for j=1:n(2)

b(i,s(i,j))=j;
end

end
s=b;

Our program needs the Cartesian coordinates of the atoms to deter-
mine the Euclidean distances in the molecule under consideration. If we
calculate these distances by HyperChem, Gaussian 98 or another software,
then for computing the symmetry of molecule under consideration, it is
enough to delete the first eight lines of the program and load the distance
matrix of the molecule.

RESULTS AND DISCUSSION

In this section, we apply our program to compute the automorphism
group of Euclidean graph of C24 molecule. The Cartesian coordinates of
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C24 were computed by HyperChem and Gaussian 98. It is useful to
mention that in present program the accuracy is very important. Our calcu-
lations on the symmetry of some fullerenes show that, if we change the
accuracy then the automorphism group will be changed.

We now calculate the symmetry of fullerene C24. Fullerenes are
molecules in the form of polyhedral closed cages made up entirely of n
three-coordinate carbon atoms and having 12 pentagonal and (n/2-10)
hexagonal faces, where n is even and greater or equal 20, with the excep-
tion of n=22. Hence, the fullerene, C24, (n = 24) has but 12 pentagons and
2 hexagons. Let G be the automorphism group of Euclidean graph of C24

fullerene with Ih symmetry point group. Consider this molecule (Fig. 1), to
illustrate the Euclidean graphs and their automorphism group. As we
mentioned before, we don’t have to work with exact Euclidean distances
since a mapping of weights into a set of integers suffices as long as differ-
ent weights are identified with different integers. To illustrate let us use a
Euclidean edge weighting for fullerenes C24 obtained from Table-1 and our
program. Suppose A is the 24 × 24 matrix defined by Euclidean distances.

Fig. 1. The fulerene C24

Not all 24! permutations of the vertices C24 belong to the automor-
phism group of its weighted graph since the weights of all the edges are
not the same. For example, the permutation (1,2,3,4,5,6,7) does not belong
to the automorphism group since the resulting graph does not preserve
connectivity. Let X denote the set of all solutions of matrix equation PtAP
= A. Set Y = {∝ ∈ S24 | P∝ ∈ X}. Then Y is the automorphism group of
Euclidean graph of C24. We now apply our MATLAB program to find a
solution matrix for this group. Using the solution matrix of C24 and a simple
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GAP program, we can find the structure of the automorphism group G of
Euclidean graph of C24. We mention that this program is very fast and its
running time is less than 0.01 s. Our GAP program is as follows:

We computed below the distance matrix D for C24, as follows:
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G={(1),(3 ,4)(5,15)(6,14)(8,11)(9,16)(10,12)(18,20)(21,23)

(1,2) (5,8)(6.10)(7,13)(8,5)(11,15)(12,14)(17,19)(22,24),
(1,2)(3,4)(5,11)(6,12)(7,13)(8,15)(9,16)(10,14)(17,19)(18,20)(21,23)
(22,24)}

Conclusion

Suppose T is a complete weighted graph and Supp(T) = |{w(e)|e is an
edge of T}|. If Supp(T) is large enough, for example greater than |V(T)|,
then our algorithm and also our MATLAB program is very fast for com-
puting the symmetry of the graph T. In particular, our program is suitable
for computing symmetry of fullerenes. We applied our programs for com-
puting symmetries of all molecules in fullerene gallery presented by Mitsuho
Yoshida (for details http://www.cochem2.tutkie.tut.ac.jp/Fuller/higher/
higherE.html) with running time less than 0.01 s for GAP program and
less than 1 s for MATLAB program with some parallel Pentium IV com-
puters. The maximum running time is obtained in the case of fullerene
with Ih symmetry group.
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We also mentioned that, our calculations with GAP and calculations
done by Balasubramanian3-9, Hao-Xu10, Ivanov11 and Ivanov-Schüürmann12,
show that the automorphism group of the Euclidean graph of every
molecule is trivial or has an even number of elements.
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