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In this study, a quantitative structure-property relationship method
based on multiple linear regressions (MLR) and artificial neural network
(ANN) techniques were applied for the calculation/prediction of =,
and mt," parameters of the linear solvation energy relationship (LSER).
The selected descriptors that appear in multiple linear regression models
for £B." are: maximal electrotopological positive variation, average
connectivity index chi-5, Geary autocorrel ation-lagl/weighted by atomic
polarizahilities, radial distribution function-2/unweighted and leverage-
welghted autocorrel ation-lag 4/unweighted. Also descriptors that appear
in MLR model for m," are: Geary autocorrelation-lag2/weighted by
atomic Sanderson electronegativites, 2nd component accessibility
directional WHIM index/weighted by atomic vander Waals volumes,
d COMMA-2 value/weighted by atomic Sanderson electronegativites,
number of H attached to Cy(sp®)/Co(sp?) and dipole moment. These
descriptorswere used asinputsfor two ANNS. After training and optimi-
zation of these ANNSs, they were used to prediction of 7,” and Zf3,"
values of the test set compounds, separately. Analysis of the results
obtained indicates that the models we proposed can correctly represent
the relationship between these L SER solute parameters and theoretically
calculated molecular descriptors. Also results showed the superiority
of neural networks over regression models.

Key Words: Neural network, Quantitative structure-property
relationship, Linear solvation energy relationship, Multiple linear
regression, Molecular descriptors.

INTRODUCTION

Important progress has been made over the last years in understanding the
relationshi ps between various properties of organic compounds and their chemical
structures. Numerous predictive models were developed that aim to predict mixture
thermodynamic properties from parameters that quantify the structure of the mole-
cules. Such investigations are called quantitative structure-property relationship
(QSPR) studies. The key to the QSPR methodol ogy isthe accurate characterization
of structural features (molecular descriptors) that related to the observed property.
The advantage of QSPR study as compared with other methods isthat no experimental
parameters are required. In view of the fact that the most chemicals have very little



2522 Fatemi et al. Asian J. Chem.

testing data, it would be desirable if one could develop QSPR model only from
molecular descriptors that can be calculated directly from the chemical structure.
Among one of the most significant achievements of QSPRs is the linear solvation
energy relationship (LSER) of Kamlet et al.*. The L SER model wasfirst devel oped
by Kamlet and Taft to describe solvation effects on physico-chemical processes?®.
The descriptorsin thismodel were later adapted to describe solute characteristic in
order to investigate the solubility propertiesin various media®’. The L SER approach
has been applied extensively to the study of retention in gas chromatography®*,
reverse phaseliquid chromatography (RPL C)**? and to some extent in normal-phase
liquid chromatography®-?*. Based on this model, a free energy related term in a
phase transfer process could be correlated with various fundamental molecular solute
descriptors properties. The L SER model proposed by Abraham and coworker®?’ to

express a solute property (SP) as follows:
log SP=c+ IR, + mV, + s + aZo™ + b, (1)

In this equation, the subscript 2 denotes the solute descriptors, which include
excessmolar refraction (R,), McGawans molecul ar volume (V»), dipolarity/polariz-
ability (m."™), overal hydrogen bond acidity (Zo.™) and overall hydrogen bond basicity
(ZB."). These descriptors represent the ability of solute to participate in various
solute-phase interactions. Each solute descriptor is multiplied by a coefficient (c, r,
s, a b, I) that represents the system response to these interactions. Detailed descriptions
of the parameters in egn. 1 have been extensively presented in the literature®?,
The descriptors R; and V; in egn. 1 are easily calculated from structure, but traditi-
onally the polarity and hydrogen bonding descriptors had to be determined experi-
mentally. This could be either directly from complexation measurements or indirectly
via back calculations from partition measurements, which can be difficult and time
consuming. For example, some of solute descriptors obtained from McReynolds
gas chromatographic retention data by Ballantine and Callihan®. The values of ",
B, and Zo" parameters obtained from GC measurements by Abraham et al. .
Also, Roglaski and Mutelet® have used temperature gradient gas chromatography
to determine/predict LSER parameters of highly boiling organic compounds.
Whereas the experimental determinations of these parameters are expensive, time
consuming and needsto pure organic compound, therefore devel opment of atheore-
tical based method for calculations/predictions of these parameters are necessary.
Recently, atheoretical method has been developed for the estimation of these para-
meters (m", 2B." and Zo,"™") based on fragmental contributions®. The generality of
this method is limited by the lack of experimental data for important fragments.
The fragmental contributions to descriptors were taken from an experimental data
base of descriptors and clearly, if a given fragment is not present in the data base
then no values can be assigned. Also the calculations of the 7., 2B." and Zo"
parameters separately obtained from other types of fragmentation method for some
solute by Platts et al.*%*, But these manual fragmentation approachesis slow, time
consuming and limiting the use of egn. 1 for large datasets. Svozil et al.* reported
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an artificial neural network (ANN) approach to estimating .. They took anumber
of topological and quantum mechanical properties as input, combining them non-
linearly via afeed-forward ANN. In order to get an acceptable model, they restricted
the diversity of compoundsto benzene and phenol types. The calculations performed
using the ANN method resulted in R? = 0.979 for the training set (62 compounds)
and R?=0.932 for the test set (after removal of statistical outliers) for amodel with
16 descriptors. They reported that if they use smaller ANN model with 7 descriptors
asinput, their correlation coefficients of obtained model were 0.908 and 0.537 for
training and testing set, respectively. In this paper, the cal cul ation/prediction of 7"
and B, parameters from the theoretical calculated parameters based on QSPR
methods and using artificial neural network is discussed.

EXPERIMENTAL

Dataset: Thedataset of solute descriptorsin L SER wastaken from the values
reported by Abraham et al.*. The molecules in the data set including aliphatic and
aromatic compounds are shown in Table-1. The mt," valuesfall in the range of 0.21
to 1.8 for n-butyl ether and n-benzyl formamide, respectively and also for the X,"
fall intherange of 0.02to 0.80 for chloroform and N,N-dibutyl formamide, respec-
tively. Data set were split into 3 separation section; the training; test and external
validation sets, consist of 60, 13 and 13 members, respectively. The training set
was used to adjust the parameters of model, the test set was used to prevent the net-
work from over-fitting and external validation set was used to eval uate the prediction
ability of constructed models.

Descriptors: The parameters of 7, represent the ability of solute moleculesto
interact with solvent by electronic interactions. The value of these parameters depends
on the polarizability, dipolarity, size of molecule and the strength of interaction
between the solute and solvent molecules. Also the value of 23," depends on the
ability for the formation of hydrogen bonds, polarity and the strength of interaction
between the solute and solvent molecules. Some of the molecular descriptors were
used to search for the best models of the solute descriptors (rt." and 28.") were
calculated by the Dragon package® on the basis of the minimum energy molecular
geometries optimized by the Hyperchem 5.02 (Hypercube, 1997 ). Dragon is new,
freely available software (by Milano Chemometrics and the QSAR Research Group)
for the calculation of more than 800 molecular descriptors. Also some electronic
descriptorswere cal cul ated using the MOPAC program (version 6)*. Subsequently,
the method of stepwise multiple linear regression (MLR) was used to select the
most important descriptors and to cal culate the coefficients rel ating the descriptors
to solute parameters (. and 2."). The selected descriptors that appear in MLR
model for m," are shown in Table-2. These descriptors are: Geary autocorrelation
-lag2/weighted by atomic Sanderson el ectronegativites (GATS2E), 2nd component
accessibility directional WHIM (weighted holistic invariant molecular descriptors)
index/weighted by atomic vander Waals volumes (E2V), d COMMA (comparative



2524 Fatemi et al. Asian J. Chem.

TABLE-1
DATA SET AND CORRESPONDING OBSERVED AND PREDICTED VALUES OF THE
;" AND ZB," FOR TRAINING, TEST AND VALIDATION SET?

i "

No. Name

MLR ANN EXP | MLR ANN EXP
Training set

1 1-Butanol 054 048 048 | 049 043 042
2 2-Propanol 053 055 05 | 039 034 036
3 Cyclohexanol 056 058 057 | 055 053 054
4 1-Butanal 050 041 045 | 051 064 0.65
5 1-Hexana 039 037 045 | 055 064 0.63
6 N,N-Dimethyl formamide 076 074 074 | 113 130 131
7 N,N-Dibutyl formamide 0.71 0.80 0.80 1.16 1.19 1.19
8 N,N-Dimethyl acetamide 061 078 078 | 131 134 133
9 n-Propyl formate 046 037 038 | 067 062 063
10 n-Butyl acetate 047 041 045 | 059 062 0.60
11 Ethyl propionate 041 046 045 | 067 060 058
12 Ethyl butyrate 050 047 045 | 073 057 058
13 n-Butyl ether 049 045 045 | 04 021 022
14 Acetone 046 050 049 | 064 070 0.70
15 2-Butanone 049 049 051 | 081 070 0.70
16 2-Nonanone 043 052 051 | 068 060 0.62
17 Cyclopentanone 038 052 052 | 071 087 086
18 n-Propionitrile 032 03 036 | 072 091 090
19 n-Hexyl cyanide 031 037 036 | 075 08 086
20 n-Nitropropane 050 036 031 | 09 092 095
21 n-Nitrobutane 032 030 031 | 094 09% 093
22 n-Nitropentane 043 041 031 | 095 093 091
23 Methylene chloride 004 004 005 | 049 056 057
24 Chloroform 002 004 002 )| 046 049 049
25 Dibromomethane 011 012 010 | 062 0.68 0.67
26 3-Phenyl propanal 062 067 067 | 091 090 090
27 Benzaldehyde 044 041 039 | 094 099 100
28 N-Benzyl formamide 056 062 063 | 128 174 180
29 Methyl benzoate 049 047 046 | 106 08 085
30 Ethyl benzoate 050 045 046 | 111 08 085
31 Anisole 030 028 029 | 068 076 0.75
32 Acetophenone 034 048 048 | 113 101 101
33 Propiophenone 042 051 051 | 115 09 09
A Benzophenone 053 050 050 | 156 150 150
35 m-Toluenitrile 029 032 034 | 120 109 110
36 Nitrobenzene 025 028 028 | 129 1112 111
37 o-Nitrotoluene 034 029 027 | 132 109 111
38 p-Nitrobenzyl bromide 03 041 040 | 131 148 150
39 p-Nitrobenzyl chloride 03 038 040 | 133 138 134
40 Fluoro benzene 03 010 010 | 077 057 057
11 Chloro benzene 011 003 007 | 076 0.67 0.65
12 Bromo benzene 009 011 009 | 083 070 073
43 lodo benzene 005 004 012 | 071 082 082
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2B, "

No. Name
MLR ANN EXP | MLR ANN EXP
4 Benzyl bromide 016 015 020 | 084 098 098
45 p-Chloro toluene 019 009 007 | 071 065 067
46 p-Bromo toluene 016 015 009 | 081 075 074
47 p-Dichloro benzene 011 004 002 | 061 074 075
48 Benzene 007 016 014 | 057 054 052
49 Toluene 016 013 014 | 059 051 052
50 Ethyl benzene 027 014 015 | 059 047 o051
51 tert-Butyl benzene 017 018 016 | 069 052 049
52 p-Xylene 014 014 016 | 053 055 052
53 Mesitylene 020 021 019 | 059 051 052
54 Biphenyl 026 023 022 | 099 098 099
55 Naphthalene 010 017 020 | 084 091 092
56 Anthracene 014 024 026 | 106 135 134
57 Phenal 028 029 030 | 081 08 089
58 o-Cresal 037 033 030 | 073 08 086
59 p-Ethyl phenol 038 031 036 | 075 092 09
60 p-Chloro phenal 026 024 020 | 082 108 108

Test st
1 1-Octanol 049 044 048 | 048 046 034
2 1-Heptanal 041 039 045 | 055 063 061
3 N,N-Diethyl formamide 0.68 0.73 0.76 1.08 1.22 1.25
4 n-Hexyl acetate 049 044 045 | 056 053 056
5 n-Propylether 045 040 045 | 037 016 023
6 2-Heptanone 041 052 051 | 072 065 066
7 n-Valeronitrile 022 034 036 | 077 095 09
8 n-Heptyl cyanide 033 03 036 | 073 081 084
9 Benzyl acohol 046 043 056 | 086 098 087
10 Benzonitrile 023 023 033 | 110 1056 111
11 m-Nitro toluene 032 027 025 | 130 109 110
12 n-Propyl benzene 031 008 015 | 054 046 050
13 p-Cresol 036 034 031 | 073 083 087
Validation set

1 1-Hexanol 044 035 048 | 049 048 038
2 1-Octana 044 041 045 | 056 062 059
3 N,N-Diethyl acetamide 065 074 078 | 121 147 130
4 n-Amyl acetate 048 042 045 | 056 059 058
5 Ethyl ether 053 050 045 | 037 027 025
6 2-Hexanone 03 047 051 | 073 074 0.68
7 n-Hexanitrile 028 033 036 | 074 08 088
8 n-Octyl cyanide 041 034 036 | 073 071 082
9 2-Phenyl ethanal 051 058 064 | 087 098 091
10 Benzyl cyanide 030 031 045 | 116 111 115
11 p-Nitro toluene 034 029 028|125 114 111
12 n-Butyl benzene 034 009 015 | 053 051 o051
13 m-Cresol 036 032 034 | 079 097 088

®Exp refers to experimental; ANN refersto artificia neura network; MLR refersto multiple
linear regression determined value of =" and 2,



2526 Fatemi et al. Asian J. Chem.

TABLE-2
SPECIFICATION OF MULTIPLE LINEAR REGRESSIONS FOR
THE MODELING OF r,

Descriptor Notation Coefficient Main effect
Geary autocorrelation Hag2/weighted by ~ GATS2E -0.489 (£0.104) -0.370
atomic Sanderson el ectronegativites
2™ Component accessibility directional E2V 0.961 (+0.230) 0.290

WHIM index/weighted by atomic van der
Waals volumes

d COMMA 2 value/weighted by atomic DISPE -0.571(+0.188) -0.142
Sanderson electronegativites

Number of H attached to C,(50°)/Cy(sp) HAC 0.089 (+0.009) 0.352
Dipole moment DP 0.381 (+0.062) 0.325
Constant 0.470 (+0.084)

molecular moment analysis) val ue/weighted by atomic Sanderson el ectronegativites
(DISPE), number of H attached to C,(sp3)/Co(sp2) (HAC) and dipol moment (DP).
Also the names of the descriptorsthat appear in the best ML R equation for modeling
of XB," parameter are shown in Table-3. These descriptors are: maximal
electrotopological positive variation (MAXDP), average connectivity index chi-5
(X5A), Geary autocorrel ation-lagl/weighted by atomic polarizabilities (GATS1P),
Radial distribution function-2/unweighted (RDF020U) and leverage-weighted
autocorrelation-lag 4/unweighted (HATS4U). These descriptors were used as inputs
for generated ANNSs. A detailed description of these descriptors has been adequately
described elsewhere®.

TABLE-3
SPECIFICATION OF MULTIPLE LINEAR REGRESSIONS
FOR THE MODELING OF =B,

. . - Main
Descriptor Notation Coefficient effect
Maximal electro topological positive variation MAXDP 0.073(x0.009) 0.155
Average connectivity index chi-5 X5A -0.723 (+0.198) -0.069
Geary autocorrelation-lagl/weighted by atomic GATSLP 0.129(+0.031) 0.149
polarizabilities
Leverage-weighted autocorrelation of 4/unweighted HATSAU 0.089 (+0.030)  0.068
Radial distribution function-2/unweighted RDFO20U  0.069 (+0.010) 0.131
Constant -0.092 (+0.037)

Artificial neural network: Artificial neural networks have been applied in
QSPR analysissince the late of 1980s dueto its flexibility in modeling of non-linear
problems. They are parallel computational devices consisting of groups of highly
interconnected processing € ements called neurons. They are characterized by topology,
computational characteristics of their elements and training rules. Traditional neural
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networks have neurons arranged in a series of layers. The first layer is termed the
input layer, each of its neurons receivesinformation from the exterior, corresponding
to one of the independent variables used asinputs. Thelast layer isthe output layer
and its neurons handle the output from the network. The layers of neurons between the
input and output layers are called hidden layers. Each layer may make its independent
computations and may pass the results to another layer. In feed forward neural
networks the connections among neurons are directed upwards. ANN offers attractive
possibilitiesfor non-linear modeling and optimization when underlying mechanisms
are complex. They have been widdly used to predict many physico-chemica properties.
The theories behind of artificial neural networks have been adequately described® .

The program for the feed-forward neural networks that were trained by back-
propagation algorithm waswritten by VISUAL FORTRAN inthelaboratory. These
networks have 5 nodesin theinput layer and 1 node in the output layer. Descriptors
that appeared in the selected MLR models were used as inputs for the generated
ANNSs and their outputs are the values of 7," or 23, for the molecules of interest.
The number of nodes in the hidden layer would be optimized. The initial weights
were randomly selected from a uniform distribution that ranged between -0.3 and
+0.3. Theinitial biasvalueswere set to be one. These values were optimized during
the network training. The value of each input was divided into its mean value to
bring them into the dynamic range of the sigmoid transfer function of the ANN.
Before training, the network was optimized for the number of nodes in the hidden
layer, learning rate and momentum and then the network was trained using the
training and test sets to optimize the values of weights and biases. The test set was
used to prevent the network from overfitting. In order to eval uate the prediction power
of the ANN, trained network was employed to calculate the solute parameters for
the validation set.

RESULTSAND DISCUSSION

The data set and corresponding observed and ANN predicted values of ;" and
3B, for al molecules studied in this work are shown in Table-1. The selected
descriptors that appear in MLR model for w," are shown in Table-2. In this table,
the parameter of GATS2E has maximum main effect. This parameter is an auto-
correlation descriptor that weighted by electronegativity and has a negative effect
on the value of m,". Increasing of GATS2E causes adecreasing in 1t," value due to
the decreasing in the electronegativity effect. Next descriptor that has high main
effect is HAC. This descriptor shows the sum of the number of hydrogen atoms
connected to SP? carbon atom and the number of hydrogen atoms attached to carbon
atoms, which this carbon connected to an electronegative atom. The value of this
descriptor represents the polarity characteristic of amolecule and inclusion of this
parameter in ;" model reveals the role of dipolarity/polarizability interaction in
solute properties. Other parameter in this model is dipole moment (DP) that has a
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direct effect on polarity parameter. The descriptor of E2V shows the electron density
around the Y-axis in amolecule and has a positive main effect. This parameter has
direct relation with the 7t," value because increasing in electron density around the
Y-axis causes that this molecule more stretched and the value of m," would be
increased. The final descriptor that appears in m," model with the smallest main
effect is DISPE, which is a component of COMMA type's descriptors. This descriptor
indi cates displacement between the geometric center and the center of the considered
property field with respect to the molecular principal axes. The considered property
field for the DISPE descriptor is electronegativites. Increasing in the displacement
between the geometric center and the center of electronegative field causes a decrease
in the electronegative effectiveness and decreasing in the value of m,".

The name of descriptors and their main effects that appear in MLR model for
>B." are shown in Table-3. The parameter of MAXDP has a maximum positive
main effect and describes compound el ectrophilicity, which relate to the types of
polar groups in the molecules. Next descriptor is GATS1P with positive main effect,
whichisan autocorrel ation descriptor that weighted by polarizability. This descriptor
describes how considered property (polarizability) was distributed along a topo-
logical structure of amolecule. Increasing in GATS1P causes anincreasing in 3,
value due to the increasing in charge distribution in the molecule. Other descriptor
with a positive main effect in p," model was radial distribution function
(RDF020UV). Thisdescriptor providesinformation about atom types, ring typesand
planar or non-planar systems of amolecule. As shown in Table-3, another descriptor
iISHATSAU, which isaonetype of the GETAWAY descriptors and encoding infor-
mation on the effective position of substituent, fragments in the molecular space
and the molecular size for specific atomic properties and has a positive effect on
the value of 3,". Thefinal descriptor in Zf," model with the smallest main effect
was X5A. The X5A parameter is one of the topological descriptors that related to
the valence layer electrons and the number of atoms in molecule, this descriptor
shows the effect of these two factors simultaneously and has a negative effect on
>B.". Theinclusion of these descriptorsin m," and B," modelsrevea s theimportant
roles of electronic and steric interactions in solute characteristics.

In the next step, two separately ANN developed to calculate of the ™ and
>B.". Before training the networks, the parameters of the number of nodes in the
hidden layer, weights and biases |earning rates and momentum val ues were optimized.
The procedure for the optimization of these parameters is reported in previous
papers™>°, Table-4 showsthe architecture and specifications of the optimized ANNs
parameters for modeling the values of 1, and 2B,". These networks were then
trained by using the training set for the optimization of the weights and biases
values by back propagation algorithm. It isknown that neural network can become
over-trained. An over-trained network has usually learned perfectly the stimulus
pattern it has seen but can not give accurate prediction for unseen stimuli and it no
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TABLE-4
ARCHITECTURE AND SPECIFICATION OF THE GENERATED
ANNSs FOR ," and £, MODELING

Parameter 7, ANN *B," ANN

No. of nodesin theinput layer 5 5

No. of nodesin the hidden layer 8 9

No. of nodesin the output layer 1 1
Weightslearning rate 0.210 0.250
Biases learning rate 0.320 0.850
Momentum 0.391 0.480
Transfer function Sigmoid Sigmoid

longer able to generalize. There are several methods for overcoming this problem.
One method is to use a test set to evaluate the prediction power of the network
during itstraining. In this method, after each 100 training iteration the network was
used to calculate solute parameters (rt." or £f,") of moleculesincluded in the test
set. To maintain the predictive power of the network at a desirable level, training
was stopped when the value of errors for the test set started to increase. Since this
error is not a good estimate of the generalization error, prediction potential of the
model was evaluated on athird set of data, named validation set. The compoundsin
the validation set were not used during the training process and were reserved to
evaluate the predictive power of the generated ANN.

Table-1 represent the experimental and ANNS predicted val ues of 7" and Zf3,"
for the training, test and validation sets. Also in Table-5, the statistical parameters
of ANNs and MLRs models for the m," and Xf," parameters are shown. For the
>B." model, the standard errors of training, test and validation sets for the MLR
model are 1.439, 1.22 and 0.928, respectively which would be compared with the
values of 0.177, 0.638 and 0.670, respectively, for the ANN model. Also, for the
>B." model, the standard errors of training, test and validation sets for the MLR
model are 0.716, 0.728 and 1.086, respectively which would be compared with the
values of 0.293, 0.475 and 0.512, respectively, for the ANN model. Comparison
between these values and other statistical valuesin Table-5 showsthe superiority of
ANNs over MLR models.

TABLE-5
STATISTICAL PARAMETERS OBTAINED USING THE ANN AND MLR MODELS*

Parameter Modd (SB)c (SB), (B, R R, R R F R
" ANN 0177 0638 0670 0998 0980 0978 18013 266 244
MLR 1439 1221 0.928 0887 0924 0958 214 65 123

spp  ANN 0293 0475 0512 0989 0955 0950 2505 113 101
§ MLR 0716 0728 108 0916 0828 0748 303 24 14

% refersto thetraining set; p refer to the prediction set; v refersto the validation set; (SE). is
the standard error of training; set; (SE), is the standard error of test set; (SE), is the standard
error of vaidation set; R is the correlation coefficient; F is the statistical F value.

)
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Figs. 1 and 2 shows the plot of the ANN predicted versus the experimental
values of 7" and ZB," for the training, test and validation sets, respectively. The
propagation of results in both sides of regression line indicates that no systematic
error exists in the generated ANNs models.

2

‘ ¢Train ATest =Valid ‘

" (ANN)
=

0.5 4

0 0.5 1 1.5
" (EXP)

Fig. 1. Plot of the calculated " against the experimental values

1

#Train ATest =Valid

ZB." (ANN)

0 012 0“4 016 0.8
2B." (EXP)
Fig. 2. Plot of the calculated X," against the experimental values
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Conclusion

The QSPR model presented hereis better than those reported by Svozil and co-
worker® due to higher correlation coefficient; lower the number of used descriptors
and diversity of compound, studied in thiswork. The results of this sudy demonstrate
that the QSPR method using the ANN techniques can generate suitable modelsfor the
prediction of the 7t," and 2. values for some aliphatic and aromatic compounds.
The key strength of the neural networksistheir ability to alow for flexible mapping
of the selected features by manipulating their functional dependence implicitly,
unlikeregression analysis. Neural network handles both linear and non-linear relati-
onships without adding complexity to modd. This capability offset the large computing
time required and complexity of the ANN method with respect to MLR. Also the
analysis of the results obtained indicates that the models one can proposed correctly
represent the relationship between these L SER solute parameters and theoretically
calculated molecular descriptors.
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