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In this study, a quantitative structure-property relationship method
based on multiple linear regressions (MLR) and artificial neural network
(ANN) techniques were applied for the calculation/prediction of Σβ2

H

and π2
H parameters of the linear solvation energy relationship (LSER).

The selected descriptors that appear in multiple linear regression models
for Σβ2

H are: maximal electrotopological positive variation, average
connectivity index chi-5, Geary autocorrelation-lag1/weighted by atomic
polarizabilities, radial distribution function-2/unweighted and leverage-
weighted autocorrelation-lag 4/unweighted. Also descriptors that appear
in MLR model for π2

H are: Geary autocorrelation-lag2/weighted by
atomic Sanderson electronegativites, 2nd component accessibility
directional WHIM index/weighted by atomic vander Waals volumes,
d COMMA-2 value/weighted by atomic Sanderson electronegativites,
number of H attached to C1(sp3)/C0(sp2) and dipole moment. These
descriptors were used as inputs for two ANNs. After training and optimi-
zation of these ANNs, they were used to prediction of π2

H and Σβ2
H

values of the test set compounds, separately. Analysis of the results
obtained indicates that the models we proposed can correctly represent
the relationship between these LSER solute parameters and theoretically
calculated molecular descriptors. Also results showed the superiority
of neural networks over regression models.

Key Words: Neural network, Quantitative structure-property
relationship, Linear solvation energy relationship, Multiple linear
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INTRODUCTION

Important progress has been made over the last years in understanding the
relationships between various properties of organic compounds and their chemical
structures. Numerous predictive models were developed that aim to predict mixture
thermodynamic properties from parameters that quantify the structure of the mole-
cules. Such investigations are called quantitative structure-property relationship
(QSPR) studies. The key to the QSPR methodology is the accurate characterization
of structural features (molecular descriptors) that related to the observed property.
The advantage of QSPR study as compared with other methods is that no experimental
parameters are required. In view of the fact that the most chemicals have very little



testing data, it would be desirable if one could develop QSPR model only from
molecular descriptors that can be calculated directly from the chemical structure.
Among one of the most significant achievements of QSPRs is the linear solvation
energy relationship (LSER) of Kamlet et al.1. The LSER model was first developed
by Kamlet and Taft to describe solvation effects on physico-chemical processes2-5.
The descriptors in this model were later adapted to describe solute characteristic in
order to investigate the solubility properties in various media6,7. The LSER approach
has been applied extensively to the study of retention in gas chromatography8-13,
reverse phase liquid chromatography (RPLC)14-20 and to some extent in normal-phase
liquid chromatography21-24. Based on this model, a free energy related term in a
phase transfer process could be correlated with various fundamental molecular solute
descriptors properties. The LSER model proposed by Abraham and coworker25-27 to
express a solute property (SP) as follows:

log SP = c + rR2 + mV2 + sπ2
H + aΣα2

H + bΣβ2
H (1)

In this equation, the subscript 2 denotes the solute descriptors, which include
excess molar refraction (R2), McGawans molecular volume (V2), dipolarity/polariz-
ability (π2

H), overall hydrogen bond acidity (Σα2
H) and overall hydrogen bond basicity

(Σβ2
H). These descriptors represent the ability of solute to participate in various

solute-phase interactions. Each solute descriptor is multiplied by a coefficient (c, r,
s, a, b, l) that represents the system response to these interactions. Detailed descriptions
of the parameters in eqn. 1 have been extensively presented in the literature25-28.
The descriptors R2 and V2 in eqn. 1 are easily calculated from structure, but traditi-
onally the polarity and hydrogen bonding descriptors had to be determined experi-
mentally. This could be either directly from complexation measurements or indirectly
via back calculations from partition measurements, which can be difficult and time
consuming. For example, some of solute descriptors obtained from McReynolds
gas chromatographic retention data by Ballantine and Callihan29. The values of π2

H,
Σβ2

H and Σα2
H parameters obtained from GC measurements by Abraham et al.30.

Also, Roglaski and Mutelet31 have used temperature gradient gas chromatography
to determine/predict LSER parameters of highly boiling organic compounds.
Whereas the experimental determinations of these parameters are expensive, time
consuming and needs to pure organic compound, therefore development of a theore-
tical based method for calculations/predictions of these parameters are necessary.
Recently, a theoretical method has been developed for the estimation of these para-
meters (π2

H, Σβ2
H and Σα2

H) based on fragmental contributions32. The generality of
this method is limited by the lack of experimental data for important fragments.
The fragmental contributions to descriptors were taken from an experimental data
base of descriptors and clearly, if a given fragment is not present in the data base
then no values can be assigned. Also the calculations of the π2

H, Σβ2
H and Σα2

H

parameters separately obtained from other types of fragmentation method for some
solute by Platts et al.33-35. But these manual fragmentation approaches is slow, time
consuming and limiting the use of eqn. 1 for large datasets. Svozil et al.36 reported
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an artificial neural network (ANN) approach to estimating π2
H. They took a number

of topological and quantum mechanical properties as input, combining them non-
linearly via a feed-forward ANN. In order to get an acceptable model, they restricted
the diversity of compounds to benzene and phenol types. The calculations performed
using the ANN method resulted in R2 = 0.979 for the training set (62 compounds)
and R2 = 0.932 for the test set (after removal of statistical outliers) for a model with
16 descriptors. They reported that if they use smaller ANN model with 7 descriptors
as input, their correlation coefficients of obtained model were 0.908 and 0.537 for
training and testing set, respectively. In this paper, the calculation/prediction of π2

H

and Σβ2
H parameters from the theoretical calculated parameters based on QSPR

methods and using artificial neural network is discussed.

EXPERIMENTAL

Data set:  The data set of solute descriptors in LSER was taken from the values
reported by Abraham et al.30. The molecules in the data set including aliphatic and
aromatic compounds are shown in Table-1. The π2

H values fall in the range of 0.21
to 1.8 for n-butyl ether and n-benzyl formamide, respectively and also for the Σβ2

H

fall in the range of 0.02 to 0.80 for chloroform and N,N-dibutyl formamide, respec-
tively. Data set were split into 3 separation section; the training; test and external
validation sets, consist of 60, 13 and 13 members, respectively. The training set
was used to adjust the parameters of model, the test set was used to prevent the net-
work from over-fitting and external validation set was used to evaluate the prediction
ability of constructed models.

Descriptors: The parameters of π2
H represent the ability of solute molecules to

interact with solvent by electronic interactions. The value of these parameters depends
on the polarizability, dipolarity, size of molecule and the strength of interaction
between the solute and solvent molecules. Also the value of Σβ2

H depends on the
ability for the formation of hydrogen bonds, polarity and the strength of interaction
between the solute and solvent molecules. Some of the molecular descriptors were
used to search for the best models of the solute descriptors (π2

H and Σβ2
H) were

calculated by the Dragon package37 on the basis of the minimum energy molecular
geometries optimized by the Hyperchem 5.02 (Hypercube, 1997 ). Dragon is new,
freely available software (by Milano Chemometrics and the QSAR Research Group)
for the calculation of more than 800 molecular descriptors. Also some electronic
descriptors were calculated using the MOPAC program (version 6)38. Subsequently,
the method of stepwise multiple linear regression (MLR) was used to select the
most important descriptors and to calculate the coefficients relating the descriptors
to solute parameters (π2

H and Σβ2
H). The selected descriptors that appear in MLR

model for π2
H are shown in Table-2. These descriptors are: Geary autocorrelation

-lag2/weighted by atomic Sanderson electronegativites (GATS2E), 2nd component
accessibility directional WHIM (weighted holistic invariant molecular descriptors)
index/weighted by atomic vander Waals volumes (E2V), d COMMA (comparative
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TABLE-1 
DATA SET AND CORRESPONDING OBSERVED AND PREDICTED VALUES OF THE 

π2
H AND Σβ2

H FOR TRAINING, TEST AND VALIDATION SETa 

Σβ2
H π2

H 
No. Name 

MLR ANN EXP MLR ANN EXP 
Training set        

1 1-Butanol 0.54 0.48 0.48 0.49 0.43 0.42 
2 2-Propanol 0.53 0.55 0.56 0.39 0.34 0.36 
3 Cyclohexanol 0.56 0.58 0.57 0.55 0.53 0.54 
4 1-Butanal 0.50 0.41 0.45 0.51 0.64 0.65 
5 1-Hexanal 0.39 0.37 0.45 0.55 0.64 0.63 
6 N,N-Dimethyl formamide 0.76 0.74 0.74 1.13 1.30 1.31 
7 N,N-Dibutyl formamide 0.71 0.80 0.80 1.16 1.19 1.19 
8 N,N-Dimethyl acetamide 0.61 0.78 0.78 1.31 1.34 1.33 
9 n-Propyl formate 0.46 0.37 0.38 0.67 0.62 0.63 
10 n-Butyl acetate 0.47 0.41 0.45 0.59 0.62 0.60 
11 Ethyl propionate 0.41 0.46 0.45 0.67 0.60 0.58 
12 Ethyl butyrate 0.50 0.47 0.45 0.73 0.57 0.58 
13 n-Butyl ether 0.49 0.45 0.45 0.44 0.21 0.21 
14 Acetone 0.46 0.50 0.49 0.64 0.70 0.70 
15 2-Butanone 0.49 0.49 0.51 0.81 0.70 0.70 
16 2-Nonanone 0.43 0.52 0.51 0.68 0.60 0.62 
17 Cyclopentanone 0.38 0.52 0.52 0.71 0.87 0.86 
18 n-Propionitrile 0.32 0.35 0.36 0.72 0.91 0.90 
19 n-Hexyl cyanide 0.31 0.37 0.36 0.75 0.86 0.86 
20 n-Nitropropane 0.50 0.36 0.31 0.99 0.92 0.95 
21 n-Nitrobutane 0.32 0.30 0.31 0.94 0.96 0.93 
22 n-Nitropentane 0.43 0.41 0.31 0.95 0.93 0.91 
23 Methylene chloride 0.04 0.04 0.05 0.49 0.56 0.57 
24 Chloroform 0.02 0.04 0.02 0.46 0.49 0.49 
25 Dibromomethane 0.11 0.12 0.10 0.62 0.68 0.67 
26 3-Phenyl propanol 0.62 0.67 0.67 0.91 0.90 0.90 
27 Benzaldehyde 0.44 0.41 0.39 0.94 0.99 1.00 
28 N-Benzyl formamide 0.56 0.62 0.63 1.28 1.74 1.80 
29 Methyl benzoate 0.49 0.47 0.46 1.06 0.85 0.85 
30 Ethyl benzoate 0.50 0.45 0.46 1.11 0.86 0.85 
31 Anisole 0.30 0.28 0.29 0.68 0.76 0.75 
32 Acetophenone 0.34 0.48 0.48 1.13 1.01 1.01 
33 Propiophenone 0.42 0.51 0.51 1.15 0.95 0.95 
34 Benzophenone 0.53 0.50 0.50 1.56 1.50 1.50 
35 m-Toluenitrile 0.29 0.32 0.34 1.20 1.09 1.10 
36 Nitrobenzene 0.25 0.28 0.28 1.29 1.11 1.11 
37 o-Nitrotoluene 0.34 0.29 0.27 1.32 1.09 1.11 
38 p-Nitrobenzyl bromide 0.35 0.41 0.40 1.31 1.48 1.50 
39 p-Nitrobenzyl chloride 0.34 0.38 0.40 1.33 1.38 1.34 
40 Fluoro benzene 0.35 0.10 0.10 0.77 0.57 0.57 
41 Chloro benzene 0.11 0.03 0.07 0.76 0.67 0.65 
42 Bromo benzene 0.09 0.11 0.09 0.83 0.70 0.73 
43 Iodo benzene 0.05 0.04 0.12 0.71 0.82 0.82 
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Σβ2
H π2

H 
No. Name 

MLR ANN EXP MLR ANN EXP 
44 Benzyl bromide 0.16 0.15 0.20 0.84 0.98 0.98 
45 p-Chloro toluene 0.19 0.09 0.07 0.71 0.65 0.67 
46 p-Bromo toluene 0.16 0.15 0.09 0.81 0.75 0.74 
47 p-Dichloro benzene 0.11 0.04 0.02 0.61 0.74 0.75 
48 Benzene 0.07 0.16 0.14 0.57 0.54 0.52 
49 Toluene 0.16 0.13 0.14 0.59 0.51 0.52 
50 Ethyl benzene 0.27 0.14 0.15 0.59 0.47 0.51 
51 tert-Butyl benzene 0.17 0.18 0.16 0.69 0.52 0.49 
52 p-Xylene 0.14 0.14 0.16 0.53 0.55 0.52 
53 Mesitylene 0.20 0.21 0.19 0.59 0.51 0.52 
54 Biphenyl 0.26 0.23 0.22 0.99 0.98 0.99 
55 Naphthalene 0.10 0.17 0.20 0.84 0.91 0.92 
56 Anthracene 0.14 0.24 0.26 1.06 1.35 1.34 
57 Phenol 0.28 0.29 0.30 0.81 0.86 0.89 
58 o-Cresol 0.37 0.33 0.30 0.73 0.88 0.86 
59 p-Ethyl phenol 0.38 0.31 0.36 0.75 0.92 0.90 
60 p-Chloro phenol 0.26 0.24 0.20 0.82 1.08 1.08 

Test set        
1 1-Octanol 0.49 0.44 0.48 0.48 0.46 0.34 
2 1-Heptanal 0.41 0.39 0.45 0.55 0.63 0.61 
3 N,N-Diethyl formamide 0.68 0.73 0.76 1.08 1.22 1.25 
4 n-Hexyl acetate 0.49 0.44 0.45 0.56 0.53 0.56 
5 n-Propylether 0.45 0.40 0.45 0.37 0.16 0.23 
6 2-Heptanone 0.41 0.52 0.51 0.72 0.65 0.66 
7 n-Valeronitrile 0.22 0.34 0.36 0.77 0.95 0.90 
8 n-Heptyl cyanide 0.33 0.35 0.36 0.73 0.81 0.84 
9 Benzyl alcohol 0.46 0.43 0.56 0.86 0.98 0.87 
10 Benzonitrile 0.23 0.23 0.33 1.10 1.05 1.11 
11 m-Nitro toluene 0.32 0.27 0.25 1.30 1.09 1.10 
12 n-Propyl benzene 0.31 0.08 0.15 0.54 0.46 0.50 
13 p-Cresol 0.36 0.34 0.31 0.73 0.83 0.87 

Validation set       
1 1-Hexanol 0.44 0.35 0.48 0.49 0.48 0.38 
2 1-Octanal 0.44 0.41 0.45 0.56 0.62 0.59 
3 N,N-Diethyl acetamide 0.65 0.74 0.78 1.21 1.47 1.30 
4 n-Amyl acetate 0.48 0.42 0.45 0.56 0.59 0.58 
5 Ethyl ether 0.53 0.50 0.45 0.37 0.27 0.25 
6 2-Hexanone 0.35 0.47 0.51 0.73 0.74 0.68 
7 n-Hexanitrile 0.28 0.33 0.36 0.74 0.88 0.88 
8 n-Octyl cyanide 0.41 0.34 0.36 0.73 0.71 0.82 
9 2-Phenyl ethanol 0.51 0.58 0.64 0.87 0.98 0.91 
10 Benzyl cyanide 0.30 0.31 0.45 1.16 1.11 1.15 
11 p-Nitro toluene 0.34 0.29 0.28 1.25 1.14 1.11 
12 n-Butyl benzene 0.34 0.09 0.15 0.53 0.51 0.51 
13 m-Cresol 0.36 0.32 0.34 0.79 0.97 0.88 

aExp refers to experimental; ANN refers to artificial neural network; MLR refers to multiple 
linear regression determined value of π2

H and Σβ2
H. 
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TABLE-2 
SPECIFICATION OF MULTIPLE LINEAR REGRESSIONS FOR  

THE MODELING OF π2
H 

Descriptor Notation Coefficient Main effect 
Geary autocorrelation –lag2/weighted by 
atomic Sanderson electronegativites  

GATS2E -0.489 (±0.104) -0.370 

2nd Component accessibility directional 
WHIM index/weighted by atomic van der 
Waals volumes  

E2V 0.961 (±0.230) 0.290 

d COMMA 2 value/weighted by atomic 
Sanderson electronegativites 

DISPE  -0.571(±0.188) -0.142 

Number of H attached to C1(sp3)/C0(sp2)  HAC 0.089 (±0.009) 0.352 
Dipole moment DP 0.381 (±0.062) 0.325 
Constant  0.470 (±0.084)  

 

molecular moment analysis) value/weighted by atomic Sanderson electronegativites
(DISPE), number of H attached to C1(sp3)/C0(sp2) (HAC) and dipol moment (DP).
Also the names of the descriptors that appear in the best MLR equation for modeling
of Σβ2

H parameter are shown in Table-3. These descriptors are: maximal
electrotopological positive variation (MAXDP), average connectivity index chi-5
(X5A), Geary autocorrelation-lag1/weighted by atomic polarizabilities (GATS1P),
Radial distribution function-2/unweighted (RDF020U) and leverage-weighted
autocorrelation-lag 4/unweighted (HATS4U). These descriptors were used as inputs
for generated ANNs. A detailed description of these descriptors has been adequately
described elsewhere39-50.

TABLE-3 
SPECIFICATION OF MULTIPLE LINEAR REGRESSIONS  

FOR THE MODELING OF Σβ2
H 

Descriptor Notation Coefficient Main 
effect 

Maximal electro topological positive variation  MAXDP 0.073 (±0.009) 0.155 
Average connectivity index chi-5  X5A -0.723 (±0.198) -0.069 
Geary autocorrelation-lag1/weighted by atomic 
polarizabilities 

GATS1P 0.129 (±0.031) 0.149 

Leverage-weighted autocorrelation of 4/unweighted  HATS4U 0.089 (±0.030) 0.068 
Radial distribution function-2/unweighted  RDF020U 0.069 (±0.010) 0.131 
Constant  -0.092 (±0.037)  

 
Artificial neural network:  Artificial neural networks have been applied in

QSPR analysis since the late of 1980s due to its flexibility in modeling of non-linear
problems. They are parallel computational devices consisting of groups of highly
interconnected processing elements called neurons. They are characterized by topology,
computational characteristics of their elements and training rules. Traditional neural
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networks have neurons arranged in a series of layers. The first layer is termed the
input layer, each of its neurons receives information from the exterior, corresponding
to one of the independent variables used as inputs. The last layer is the output layer
and its neurons handle the output from the network. The layers of neurons between the
input and output layers are called hidden layers. Each layer may make its independent
computations and may pass the results to another layer. In feed forward neural
networks the connections among neurons are directed upwards. ANN offers attractive
possibilities for non-linear modeling and optimization when underlying mechanisms
are complex. They have been widely used to predict many physico-chemical properties.
The theories behind of artificial neural networks have been adequately described51-53.

The program for the feed-forward neural networks that were trained by back-
propagation algorithm was written by VISUAL FORTRAN in the laboratory. These
networks have 5 nodes in the input layer and 1 node in the output layer. Descriptors
that appeared in the selected MLR models were used as inputs for the generated
ANNs and their outputs are the values of π2

H or Σβ2
H for the molecules of interest.

The number of nodes in the hidden layer would be optimized. The initial weights
were randomly selected from a uniform distribution that ranged between -0.3 and
+0.3. The initial bias values were set to be one. These values were optimized during
the network training. The value of each input was divided into its mean value to
bring them into the dynamic range of the sigmoid transfer function of the ANN.
Before training, the network was optimized for the number of nodes in the hidden
layer, learning rate and momentum and then the network was trained using the
training and test sets to optimize the values of weights and biases. The test set was
used to prevent the network from overfitting. In order to evaluate the prediction power
of the ANN, trained network was employed to calculate the solute parameters for
the validation set.

RESULTS AND DISCUSSION

The data set and corresponding observed and ANN predicted values of π2
H and

Σβ2
H for all molecules studied in this work are shown in Table-1. The selected

descriptors that appear in MLR model for π2
H are shown in Table-2. In this table,

the parameter of GATS2E has maximum main effect. This parameter is an auto-
correlation descriptor that weighted by electronegativity and has a negative effect
on the value of π2

H. Increasing of GATS2E causes a decreasing in π2
H value due to

the decreasing in the electronegativity effect. Next descriptor that has high main
effect is HAC. This descriptor shows the sum of the number of hydrogen atoms
connected to SP2 carbon atom and the number of hydrogen atoms attached to carbon
atoms, which this carbon connected to an electronegative atom. The value of this
descriptor represents the polarity characteristic of a molecule and inclusion of this
parameter in π2

H model reveals the role of dipolarity/polarizability interaction in
solute properties. Other parameter in this model is dipole moment (DP) that has a
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direct effect on polarity parameter. The descriptor of E2V shows the electron density
around the Y-axis in a molecule and has a positive main effect. This parameter has
direct relation with the π2

H value because increasing in electron density around the
Y-axis causes that this molecule more stretched and the value of π2

H would be
increased. The final descriptor that appears in π2

H model with the smallest main
effect is DISPE, which is a component of COMMA type's descriptors. This descriptor
indicates displacement between the geometric center and the center of the considered
property field with respect to the molecular principal axes. The considered property
field for the DISPE descriptor is electronegativites. Increasing in the displacement
between the geometric center and the center of electronegative field causes a decrease
in the electronegative effectiveness and decreasing in the value of π2

H.
The name of descriptors and their main effects that appear in MLR model for

Σβ2
H are shown in Table-3. The parameter of MAXDP has a maximum positive

main effect and describes compound electrophilicity, which relate to the types of
polar groups in the molecules. Next descriptor is GATS1P with positive main effect,
which is an autocorrelation descriptor that weighted by polarizability. This descriptor
describes how considered property (polarizability) was distributed along a topo-
logical structure of a molecule. Increasing in GATS1P causes an increasing in Σβ2

H

value due to the increasing in charge distribution in the molecule. Other descriptor
with a positive main effect in Σβ2

H model was radial distribution function
(RDF020U). This descriptor provides information about atom types, ring types and
planar or non-planar systems of a molecule. As shown in Table-3, another descriptor
is HATS4U, which is a one type of the GETAWAY descriptors and encoding infor-
mation on the effective position of substituent, fragments in the molecular space
and the molecular size for specific atomic properties and has a positive effect on
the value of Σβ2

H. The final descriptor in Σβ2
H model with the smallest main effect

was X5A. The X5A parameter is one of the topological descriptors that related to
the valence layer electrons and the number of atoms in molecule, this descriptor
shows the effect of these two factors simultaneously and has a negative effect on
Σβ2

H. The inclusion of these descriptors in π2
H and Σβ2

H models reveals the important
roles of electronic and steric interactions in solute characteristics.

In the next step, two separately ANN developed to calculate of the π2
H and

Σβ2
H. Before training the networks, the parameters of the number of nodes in the

hidden layer, weights and biases learning rates and momentum values were optimized.
The procedure for the optimization of these parameters is reported in previous
papers54-56. Table-4 shows the architecture and specifications of the optimized ANNs
parameters for modeling the values of π2

H and Σβ2
H. These networks were then

trained by using the training set for the optimization of the weights and biases
values by back propagation algorithm. It is known that neural network can become
over-trained. An over-trained network has usually learned perfectly the stimulus
pattern it has seen but can not give accurate prediction for unseen stimuli and it no
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TABLE-4 
ARCHITECTURE AND SPECIFICATION OF THE GENERATED  

ANNs FOR π2
H and Σβ2

H MODELING 

Parameter π2
H ANN Σβ2

H ANN 
No. of nodes in the input layer 5 5 
No. of nodes in the hidden layer 8 9 
No. of nodes in the output layer 1 1 
Weights learning rate 0.210 0.250 
Biases learning rate 0.320 0.850 
Momentum 0.391 0.480 
Transfer function Sigmoid Sigmoid 

 
longer able to generalize. There are several methods for overcoming this problem.
One method is to use a test set to evaluate the prediction power of the network
during its training. In this method, after each 100 training iteration the network was
used to calculate solute parameters (π2

H or Σβ2
H) of molecules included in the test

set. To maintain the predictive power of the network at a desirable level, training
was stopped when the value of errors for the test set started to increase. Since this
error is not a good estimate of the generalization error, prediction potential of the
model was evaluated on a third set of data, named validation set. The compounds in
the validation set were not used during the training process and were reserved to
evaluate the predictive power of the generated ANN.

Table-1 represent the experimental and ANNs predicted values of π2
H and Σβ2

H

for the training, test and validation sets. Also in Table-5, the statistical parameters
of ANNs and MLRs models for the π2

H and Σβ2
H parameters are shown. For the

Σβ2
H model, the standard errors of training, test and validation sets for the MLR

model are 1.439, 1.22 and 0.928, respectively which would be compared with the
values of 0.177, 0.638 and 0.670, respectively, for the ANN model. Also, for the
Σβ2

H model, the standard errors of training, test and validation sets for the MLR
model are 0.716, 0.728 and 1.086, respectively which would be compared with the
values of 0.293, 0.475 and 0.512, respectively, for the ANN model. Comparison
between these values and other statistical values in Table-5 shows the superiority of
ANNs over MLR models.

TABLE-5 
STATISTICAL PARAMETERS OBTAINED USING THE ANN AND MLR MODELSa 

Parameter Model (SE)C (SE)p (SE)v Rt Rp Rv Ft Fp Fv 
ANN 0.177 0.638 0.670 0.998 0.980 0.978 18013 266 244 

π2
H 

MLR 1.439 1.221 0. 928 0.887 0.924 0.958 214 65 123 
ANN 0.293 0.475 0.512 0.989 0.955 0.950 2505 113 101 

Σβ2
H 

MLR 0.716 0.728 1.086 0.916 0.828 0.748 303 24 14 
at refers to the training set; p refer to the prediction set; v refers to the validation set; (SE)C is 
the standard error of training; set; (SE)p is the standard error of test set; (SE)v is the standard 
error of validation set; R is the correlation coefficient; F is the statistical F value. 

Vol. 21, No. 4 (2009) Prediction of Solute Descriptors in LSER Equation  2529



Figs. 1 and 2 shows the plot of the ANN predicted versus the experimental
values of π2

H and Σβ2
H for the training, test and validation sets, respectively. The

propagation of results in both sides of regression line indicates that no systematic
error exists in the generated ANNs models.
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Fig. 1. Plot of the calculated π2
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Conclusion

The QSPR model presented here is better than those reported by Svozil and co-
worker36 due to higher correlation coefficient; lower the number of used descriptors
and diversity of compound, studied in this work. The results of this study demonstrate
that the QSPR method using the ANN techniques can generate suitable models for the
prediction of the π2

H and Σβ2
H values for some aliphatic and aromatic compounds.

The key strength of the neural networks is their ability to allow for flexible mapping
of the selected features by manipulating their functional dependence implicitly,
unlike regression analysis. Neural network handles both linear and non-linear relati-
onships without adding complexity to model. This capability offset the large computing
time required and complexity of the ANN method with respect to MLR. Also the
analysis of the results obtained indicates that the models one can proposed correctly
represent the relationship between these LSER solute parameters and theoretically
calculated molecular descriptors.
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