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In this work, a mathematical analysis of Bose-Einstein condensation
(BEC) for a device of particles by zero spin which has no interaction on
each other in one harmonic potential trap has been discussed. It is indi-
cated that a trapped device, quantitatively and qualitatively, differs from
non-trapped device of free boson gas. One of its most important differ-
ences is that in contrast to a free boson gas device, there is no critical
temperature for phase transition in a harmonic oscillator trap. In this
paper, BEC in a harmonic oscillator trap in numerical and analytical
points of view by using macro canonical ensemble, Mathematica soft-
ware and Hermitian functions have been investigated.
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INTRODUCTION

One of the most interesting properties of boson gases under special condition,
is a possibility of a phase transition in a critical temperature, so that all boson gases
condensate into ground state. This phenomenon is called Bose-Einstein condensation
(BEC). In order to introduce the notion of BEC numerically, one can utilize the
definition of One-Body density matrix:

)'r()r()'r,r(n †)1( ψψ= (1)

ψ(r) and ψ†(r) are field operations which create and obliterate one particle in a
point. Theses values are in complete correspond with Boson commutation relations:

( ) ( ) 0)'r(),r(),'rr()'r(),r( † =ψψ−δ=ψψ (2)

If the investigated system was in absolute state, it is described by the N-body
density function of ψ(r1, r2, r3, .... rN). Thus, the average of equational in the stan-
dard rules of quantum mechanics is used. As a result of it we can write One-Body
density matrix as follows:



∫ ψ= )r,...,r,r(dr,....,drN)'r,r(n N2
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)r,...r,'r( N2ψ
which is consist of N-1 time integration from r2, ... rN.

If we consider n(1) as a matrix function of r and r′, then n(1)(r, r′) = [n(1)(r′, r)]*.
Thus, according to the definition, the value of n(1) will be Hermitian. Then it is

always possible to find a complete over to normal base from Eigen function of
‘φi(r)’ in which density matrix is diagonal:
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i
*
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The actual Eigen value of ni will be under normalization state. ∑ =
i

i Nn  and it

means the occupied spaces in single-body state of φi. When one of these numbers
such as no became microscopic, the BEC phenomena will occur. It means that if
n0≡N0 was a number of N time, all other numbers will remain on one time. In this
state, we can rewrite eqn. 4 as:
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The delivered state by φ0(r) is called Bose-Einstein condensation (BEC). Of
course it is a general definition, because fit is used for each microscopy system
(N>>1) of non distinguishable bosons. It should be noted that without considering
mutual interactions and external fields, Bose-Einstein condensation (BEC) can be
created easily for over cold atoms by changing and adjusting external potential.
One-body density matrix consists of information about important quantities which
are visible physically. By equalizing r and r´ by each other, r = r´ diagonal density
of system is acquired.

( ))r()r()r,r(n)r(n †)1( ψψ=≡ (6)

Concerning to ∫= dr)r(nN  for calculating distribution related to movement

volume, we can use:
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In the above mentioned formula  dr
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operation of field in delivering angle operation. By entering this equation, instead
of ψ(p) in eqn. 7, the following equation will be acquired:

∫ −
3 






 −+

π
= dRdse

2

s
R,

2

s
Rn

)h2(

1
)p(n h/s.ip)1(

(8)

In the above formula s = r – r′ and R = (r + r′)/2

2594  Adib et al. Asian J. Chem.



Now, we consider a harmonic system consists of N body in volume V. In which
there is thermodynamic confines of N, V → ∞ and density of N/V which is stable.
Special function related to density matrix are the same flat waves and they are
lower than the energy of ground state energy or the energy of zero point of move-
ment volume equal to zero, p = 0 and they have the function of stable wave equal to
φ0(r) = V–1/2. Density matrix is only depending on s = r – r′ and we can write is as
the following form:
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−+=
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It is observed that in the confines of s → ∞, the total of (Σ) which is written on
the right side of the above statement will equal to zero because of the destructive
interactions between different flat waves. But, the first statement will remain as
such. Thus, it is noted that by existence of BEC, one-body density matrix, in long
and remarkable intervals tend to a stable and definite value. Instead p = 0 related to
the space of movement volume will appear as the following:

∑
≠

−δ+δ=
0'p

'P0 )'pp(n)p(N)p(n
(10)

The total of (Σ) which is written on the right side of the above statement indicates
the number of non dense bodies of (N-No) and the value of N0 / N  is called condensate
fraction. But, if we have heterogeneous system, special function related to density
matrix are not the same flat waves. But if N which was creates is big enough and
the notion of BEC still remained, one microscopy occupation of the special one-
body function, means φ0(r) will be alongside density matrix. Therefore, dense bosons

can be described as a function of )r(N)r( 00φ=ψ , which is actually a complex
classic field which plays the role of order parameter. It should be mentioned that
this case is exactly similar to classic confines in quantum thermodynamics in which
electromagnetic field is replaced by the microscope photon definition. Function ψ
may depend on the time variable (t). In this case, we can write it as the following:

)t,r(iSe)t,r()t,r( ψ=ψ (11)

This determines the absolute value of diagonal density condensate portion;
where as phase S can properly indicate the phase factors and beyond fluidity of the
system. Order parameter which is in eqn. 11 is called microscopy wave or function
of condensate wave, is only described according to a stable phase factor. We always
can multiply this function to numerical phase factor of eiα without having any changes
in physical properties or creating new physical state. In fact, this subject reflects
gauge symmetry which is delivered by all physical equations. Therefore, a definite
selection for the value of order parameter will be created and thus, one conven-
tional fracture occurs in gauge symmetry for phase.
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After Einstein had reviewed the paper of an Indian scientist, Bose, about photons'
statistic and Planck’s distribution, he stated this theory1. But, it took 70 years till
Cornell and Wicman could create BEC in laboratory in 1995. The fact is that in
1924, Indian scientist, Bose, introduced a new statistical method on black body
radiation according to one gas from photo quantum (photon). His study alongside
his contemporaneous scientist, de Broglie, about duality of wave-substance caused
Einstein applied similar statistical method for the gas consist of N non-separatable
body by the mass of m. One of the remarkable results was related to the anticipation
of this fact that in the temperature below of some critical temperature, a definite
fraction of all bodies condensate to the lowest state of body's energy and as  pointed
this phenomenon as Bose-Einstein condensation (BEC). For some years, this anti-
cipation was not noticed till in 1938, London argued that BEC can be observed
in the beyond fluidity properties of helium gas in the temperature below 2.17 K.
Ultimately, in 1995 Cornell and Wicman observed BEC in the diluted gases which
are locked in the magnetic traps and were refrigerated up to the multi nano Kelvin.
As a result of it, a remarkable progress occurred in BEC. An important improve-
ment which was occurred in recent years was observing BEC in very cold gases
such as rubidium2, lithium3 and sodium4. Theses gases are very dilute and by the
approximate of first order it is expected that they have no interaction with a model
of simple boson gas. These experimental studies caused excitement of theoretical
studies in the field of finding physical principles which are dominate on this situation.
For several aims, it is possible to estimate complex magnetic traps which are used
in this experiment by the harmonic potential oscillator. Despite the situation in
which one Boson gas is not under the external locker potential (free Boson), there
is no critical temperature for Boson gas which is under the potential (device) which
indicates phase transition. It was indicated that there is a temperature which is
more in the special heat and can be considered as a temperature in which BEC
occurs. It was proven that a gas of the Boson gases aside interactions, in the harmonic
potential oscillator has no phase transition in critical temperatures. About a system
of charged Boson gases in a homogeneous magnetic field, a similar situation will
occur. A simple model was studied according to the Bosons with zero normal spin
which is trapped by a harmonic potential oscillator. It is showed that in this case,
BEC can not occur for a free Boson gas in free space and without trapping potential
in a similar way which occurs for trapped Boson gases in harmonic potential oscillator
is easily. By reducing temperature for a free Boson gas, chemical potential will
increase from negative values to zero. It should be noted that the temperature in
which chemical potential is equal to zero is described as a critical temperature (Tc)
which was determined for body density. In the temperature below Tc the chemical
potential will remain zero and the number of particles which are under the excitement
situation is limited. If the total number of bodies exceeded from this level, BEC can
only occur for the remained bodies which are on the ground state. Therefore, there
is a quantitative and qualitative difference between free Boson gas and a system
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consists of trapped Boson gases in harmonic potential oscillator. Unfortunately, it
is impossible to find a valid analytical approximate for special heat which allow us
to find whether special heat is a more value or not and if it is, in which temperature
it occurs. Atoms are trapped in a magnetic potential and it is possible to model this
potential with harmonic potential oscillator. Many studies5,6 were conducted about
BEC in trapped harmonic potential oscillator. In this paper, condensation of Boson
gases in one harmonic potential oscillator is investigated by a method in which the
approximate of states' density is not similar with previous reports5,6. In the studies
we come to this interesting conclusion that despite free Boson gases, in this state,
there is no critical temperature which proves phase transition. Here, a temperature
by analytical and numerical methods is acquired in which special heat is more.
This temperature can be described as a temperature in which BEC will occur.

HERMITIAN FUNCTIONS

Generative function:  Hermitian functions from the expansion of the function
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T = 0 will be acquired and then we have:
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By changing denominator of 2n + m = 1 and omission of m,
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[1/2] is a round portion of 1/2. The exponent of n is [1/2], because m = 1 – 2n
should be remained a round and positive number. By comparison of (14) and (12) a
series figure Hermit polynomial will be acquired:
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Some of these polynomials alongside their variation curves are shown in Fig. 1.
H0(x) = 1
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H1(x) = 2x
H2(x) = 2x
H2(x) = 4x2 – 2
H3(x) = 8x3 – 12x (16)
H4(x) = 16x4 – 48x2 + 12
H5(x) = 32x5 – 160x3 + 120x
H6(x) = 64x6 – 480x4 + 720x2 – 120

Fig. 1. Hermit polynomials

Recessive relations of Hermitian functions: We derivate (12) with t:
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Applying (12) in (17) and simplifying it:
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By selecting coefficient of general term of tn and equaling it to zero, the first
recessive relations of Hermitian functions will acquire.
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This time we derivate (12) with variable x:
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At the end, by selecting coefficient of general term of tn:
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By putting x = 0 in (12):
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And extension of the (23) left side:
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By equaling equivalent terms, the following values will be acquired:
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On investigating the behaviour of Hermitian functions under the parity can be
interesting and for its generative function, we have:
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as a result:
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Hermitian functions by even fraction are even and by odd fraction are odd.
Hermitian differential equation:  By derivation of (19), we have:
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By applying (22) and its derivation:
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In equation (29) Hermitian differential equation will be acquired:
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Integral figures of Hermitian functions: For acquiring integral figures of
Hermitian functions, we multiply (12) to t–m–1dt and on the closed path, we inte-
grate around the zero point (Fig. 1).
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And by its simplification:
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Fig. 2. Integral path of Hermitian functions

By changing the variable t → x – t in (33), we will have:
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The part of integration of c in (34) is a closed one around x point. From the
comparison of (34) by the formula of nth derivation of hybrid functions, the differ-
ential figures of Hermitian functions will be acquired, it means:
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Intentional of Hermitian functions:  The operation of Hermitian differential
equation is not self-adjunct. For making itself-adjunct, we should multiply the equa-
tion by f(x) function:
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On the other hand, the roots of equation 0e
2x =−  are equal to ± ∞, thus it can

be written as:
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Due to calculate (38) for m = n we consider generative function of (12). Thus,
by multiply to itself, we have:
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And by multiplying the current equation to 2xe−  and integration of it, we will

have:
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And by applying (38):
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For calculating the integral of the left side of the eqn. (41):
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At the end by expansion of ts2eπ and setting equivalent terms and combining

the result of (38) to it:
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Expansion of f(x) function according to the Hermitian functions:  Since
Hermitian functions in (−∞,∞) toward the weight function of 2xe− , create a complete
set, thus for optional function of f(x), it can be written:
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And by applying the result of (43):
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will be acquired.
Harmonic potential oscillator:  Now in the first section of this discussion and

before any other cases, we use Hermitian functions due to solve time-independent

Schröndinger's equation for harmonic potential oscillator, 
22xm
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independent Schröndinger’s equation for the above mentioned potential is:
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The above equation will be as following by changing the variables of

ω
=ε

ω
=

h

E2
andx

h

m
y :

0)y(u)y()y("u 2 =−ε+ (48)

By choosing )y(fe)y(u 2

y2

−
=  and put it in the equation (48):

0)y(f)1()y('yf2)y("f =−ε+− (49)
Will be acquired which is the same as Hermit differential equation. Of course it
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At the end, by using the definition of intentional of Hermitian functions, the
special value of normalized functions of the harmonic oscillator will be equal to:
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It is assumed to describe this device by macro canonical ensemble. One ensemble
is described as following:
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In which β = (kT)–1 and EN are the energy of levels. z = eβµ is described as a
fugicity of the device which is a factor according to the chemical potential of µ. By
expansion of logarithm in the equation 54, we can acquire the following equation:
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For a harmonic oscillator by the angle frequency of ω, the levels' energy are
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In this equation, we enter non dimension variable of 
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By using eqn. 56, we have:
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For keeping the number of particles positive and limited, it is necessary to have

ω≤ h
2

3
µ  in which 

π
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2

h
h  is a Dirac constant. Generally, it is necessary that µ ≤ E0

in which E0 is ground state energy or zero point or the lowest state. Commonly, the
critical temperature for BEC is a temperature in which µ = E0. For harmonic oscillator

ω= h
2

3
µ . Now, it is easy to indicate that BEC can not occur in Boson gases in free

space in a way which is occurring for trapped Boson gases in harmonic oscillator.
About Boson gases in free space without any limitative potential, besides the
reduction of temperature, the chemical potential will arise from negative values to
zero and it is completely compatible with the general result of µ = E0 which was
mentioned above (the lowest energy level or ground state energy or energy level of
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zero point for free Boson gas is equal to zero). It should be mentioned that the
temperature in which µ = 0 is called the critical temperature of Tc. This temperature
is determined according to the density of bodies and particles. For free Boson gas
in the temperature lower than  Tc, µ will remain in zero value and since the number
of particles is limited in excited state, therefore, when the number of particles exceed
from the maximum number of the excited state, only possibility for remained particle
is remaining in ground state. This case will result BEC and its full details are given
in any book of statistical mechanics or thermodynamics7,8. The root of differences
in the behaviours of free Boson gas and trapped Boson gas is related to the number

of particles of the ground state with the energy of ωh
2

3
. Here, besides the quantity

of x non-dimension, the quantity of 














 ε−ω=

2

3
hµ  is introduced. Level of ε → s

is correspondent with the chemical potential which reaches critical values. The
number of particles in the ground state according to x and ε are:

1e

1
N

xCa −
= ε (59)

For ε → 0, the ground state N will tend to infinite. For a definite value of x and
N (the total number of particles in the ground state and in the excited state) from

the equation 59, it is observed that 
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 and ε will be zero if T → 0

or N → ∞. As it is indicated in equation 59, for one constant N once ε become small
sufficiently, necessarily only the ground state will be occupied. The temperature in
which the ground state starts to increase number of particles remarkably, is very
important and essential. This remarkable increase will occur by the smooth and
gradual changes of temperature, so that despite the behaviour of free Boson gas, no
phase transition will be observed. In other word, although quantities will change
fast, but any transition will occur gradually and no discontinuity will be seen. Special

heat will be in the level of high temperature, when 1
kT
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= , as following:
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Also, in this level, we have:
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The above results deliver a general description on the total range of the considered
temperature for the tests which were executed in this field. For instance, we choose
the parameters which were used for rubidium atoms. In this case, N = 3000 and

Hz60
2

=
π
ω

. It is aimed to calculate the chemical potential which is given by ε (it

should be remark that 














 ε−ω=

2

3
hµ ). This calculation can be executed by solving

equation 58 for ε as a function of x. The numerical result of this calculation is
indicated as bold lines in the Fig. 3 by the Mathematica software. As it can be
observed in this diagram, ε drops from the value of the unique order to the value of
10–2 order on very small range of x. After this fast reduction, ε will reduce by the
increase of x (or reduction of T) to zero. This result is inconsistent with the actual
phase transmission such as those which occur in free Boson gas, because in free
Boson gas, ε will be equal to zero in non-zero temperature which is called critical
temperature. From N-base from harmonic oscillator it is observed that the immediate
reduction of ε is depend on the immediate increase of occupy number of ground
state. Therefore, this phenomenon will result Bose-Einstein condensation (BEC).
Although, chemical potential has an immediate change, but this changing occurs
evenly. By this way, it is impossible to identify special critical temperature. One
approximate which is used in the device by the finite volume is the calculation of
special maximum heat. The temperature in which the maximum temperature occurs
is called the critical temperature. In Fig. 4, we precisely indicate the results of the
special heat's calculation by the Mathematica software by using harmonic oscillator
sets as a bold curve. As it is indicated in this diagram, special maximum heat in xm

≅ 0/0921 is observed which is according to T ≈ 3/127 × 10–8. In this figure, phase
transition is not observed. For comparison of the above results by the results of
different researches which were done in this case, Fig. 5 is indicated in the potential
of oscillator according to the temperature which was concluded from reference9.
As it is observed in the figure, special heat for different values of particles, N, has
no transition. On the other word, as Fig. 4, identification of critical temperature is
not possible. In Fig. 6, the changes of the special heat according to the temperature
for different number of particles, are shown alongside the exact numerical results10.
Despite Figs. 4 and 5, the above diagram shows phase transition in the point of F = T0.
Also, the executed calculation by the semi classical approximate and by using three-
dimensional heterogeneous harmonic oscillator, phase transition will be acquired
again11. By all these, in the reference10 it is declared that whenever modification
executed on the calculation, this discontinuity will be eliminated in the curve of
special heat which results actual phase transition. In this order, it may be concluded
that in the devices by the limited number of particles, there is no phase transition.

Vol. 21, No. 4 (2009) Calculation of Bose-Einstein Condensation of Gases  2605



On the other hand, in these kinds of devices there is a semi condense area in which the
main part of particles in the temperature is depend on N, will drop to the lowest level
or zero level. It should be mentioned that the real tests show these semi-transition12,13.

 

Fig. 3. Changes of ε as a function of x for harmonic oscillator

 

Fig. 4. Changes of CV as a function of x for harmonic oscillator

 

Fig. 5. Changes of CV according to the temperature for harmonic oscillator9
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Fig. 6. Changes of CV according to the temperature for harmonic oscillator10

Now we will discuss about the analytical calculation of the subject. Since in
the applied approximate the assumption is that x and ε should be very small, results
for x ≤ xm ≈ 0/0921 will face trouble, because the Fig. 3 shows that ε for this
definite value of x is very large. If we describe f as a fraction of bodies in ground
state, we have:

NCa = f N (62)

In this case, by considering equation 59, we will have:
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ε can be omitted from the equations 63 and 64. Executing this operation results
homogeneous linear third rate by the constant coefficients as a general form of x3 +
a1x2 + a2x + a3 = 0 which is solved as the following in this case:

9

aa3
Q

2
12 −= (65)

54

a2a27aa9
R

3
1321 −−

= (66)

23 RQRS ++= (67)

23 RQRT +−= (68)
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Resolution:  
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(69)

From this equation we can assume x for N and f. Additionally, in the batch of
the equations 63, 1i −≡ , is a delusive number. After determining x by this method,
ε can be acquired by the equation 63. The results of this approximate calculation ε,
was indicated in the Fig. 3 as a rhombus by the Mathematica software. It is expected,
whenever x reaches to the lower level  xm; 0/0921, compatibility between approximate
result and exact result will be violated. In the area in which the maximum special
heat occurs, these two results will be compatible by each other completely. By
increasing x (so that the temperature be lower than the critical temperature) the
compatibility between approximate value for ε and the real value will improve.
Increase of the x value is correspondent by the increase of the particles' fraction in
the ground state. Now we will investigate the details of special heat. In second
diagram, the rhombus of the approximate special heat is done in the level of x = 1,
ε = 1 is done as a similar way of the done method in the first figure. The bold curve
indicates the exact results. As if is shown in figure, two results which is acquired in
the area of x < xm are compatible. Thus, for the value of x < xm, this compatibility
will violated. Because in this area ε for different value of x, is large remarkably. Of
course our calculation is done according to the small ε. In the above figure, the
maximum special heat correspond to xm; 0/0921. This maximum special heat which
is according to the temperature of this temperature is accumulated remarkably.
This temperature is called transition temperature.

Conclusion

In this paper, the authors execute an analysis from several dynamic variables
for the device consists on interactive bodies by zero spin in the harmonic potential
oscillator and we compare the acquired results from different searches which were
done in this field. Although despite what was observed about free Boson gas, there
is no phase transition, but by observing maximum special heat, it is possible to
identify the temperature in which BEC occurs. It is shown that this temperature is
remarkably equal to the temperature in which the occupied number of ground state
starts to increase. It should be mentioned that this kind of phase transition, differs
from the real phase transition which occurs in an ideal gas. Because due to acquiring
a real phase transition, the number of particles and the occupied volume by them
should be very large. However, the density of particles should be kept constant. It is
clear that no real device is able to possess these properties. Of course in many
heterogeneous microscopy devices, the thermodynamic level in which boundary
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conditions play unimportant role, is a good approximate for this experimental situation.
On the other hand, the harmonic potential oscillator in which harmony Bose-Einstein
condensation (BEC) not only the number of particles are very limited in comparision
with the ordinary devices, but, also the boundary condition which is identifies by
the potential well, are spread in the device. Due to provide thermodynamic level in
these kinds of devices, it is necessary to reduce potential so that by increasing of
the number of the particles, the mean of the density be constant. In this case, it may
be assumed that the energy level in the harmonic oscillator continuous as a micro-
scopy device and acquire phase transition as an ideal gas12,13.
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