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In thiswork, amathematical analysis of Bose-Einstein condensation
(BEC) for adevice of particles by zero spin which has no interaction on
each other in one harmonic potential trap has been discussed. It isindi-
cated that atrapped device, quantitatively and qualitatively, differsfrom
non-trapped device of free boson gas. One of its most important differ-
encesisthat in contrast to a free boson gas device, there is no critical
temperature for phase transition in a harmonic oscillator trap. In this
paper, BEC in a harmonic oscillator trap in numerical and analytical
points of view by using macro canonical ensemble, Mathematica soft-
ware and Hermitian functions have been investigated.
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INTRODUCTION

One of the most interesting properties of boson gases under special condition,
isapossibility of aphasetransitionin acritical temperature, so that al boson gases
condensate into ground state. This phenomenon is called Bose-Einstein condensation
(BEC). In order to introduce the notion of BEC numerically, one can utilize the
definition of One-Body density matrix:

n®(r,r) =y (w(r)) (1)
y(r) and y'(r) are field operations which create and obliterate one particle in a
point. Theses values are in complete correspond with Boson commutation relations:

(. ()=5(-r). (), wir)=0 2

If the investigated system was in absolute state, it is described by the N-body

density function of y(ry, Iz, 13, .... Iv). Thus, the average of equational in the stan-

dard rules of quantum mechanicsis used. Asaresult of it we can write One-Body
density matrix as follows:
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n®(r,r) = NIdrz,....,der*(r,r2,...,rN) A3)

y(r',ry,..ry)
which is consist of N-1 time integration fromr,, ... ry.
If we consider n® as amatrix function of r and r’, then n®(r, r’) = [n®(r", r)]
Thus, according to the definition, the value of n® will be Hermitian. Theniit is
always possible to find a complete over to normal base from Eigen function of
‘0i(r)” in which density matrix is diagonal:

n®(r,r)= Znid)T (Ng: (r) 4)

*

The actua Eigen value of n; will be under normalization state. z N =N and it

means the occupied spaces in single-body state of ¢:. When one of these numbers
such as n, became microscopic, the BEC phenomena will occur. It means that if
ne=N, was a number of N time, all other numbers will remain on one time. In this
state, we can rewrite egn. 4 as:
) =Noba (Do) + 2, mié: (00, (1) ©)
The delivered state by ¢o(r) is called Bose-Einstein condensation (BEC). Of
course it is a general definition, because fit is used for each microscopy system
(N>>1) of non distinguishable bosons. It should be noted that without considering
mutual interactions and external fields, Bose-Einstein condensation (BEC) can be
created easily for over cold atoms by changing and adjusting external potential.
One-body density matrix consists of information about important quantities which
arevisible physically. By equalizing r and r” by each other, r =" diagonal density
of system is acquired.

n(r) =n® (.1 = [y (w(r) ()

Concerning to N = In(r)dr for calculating distribution related to movement
volume, we can use;

n(p) = (v (p) w(p)) 7)

h
operation of field in delivering angle operation. By entering this equation, instead
of w(p) in egn. 7, the following equation will be acquired:

3 .
=3 —ipr
In the above mentioned formula v(p) = (2rh) ZJ.\y(r)exp( P jdf is the

1 @ S S| _-ipsih
n(p) = n“| R+=,R—= |e"'"*"dRds
(P) (2rh)? J. ( 2 2) ©

Inthe above formulas=r—r and R=(r +r’)/2
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Now, we consider aharmonic system consists of N body in volumeV. Inwhich
there is thermodynamic confines of N, V — < and density of N/V which is stable.
Special function related to density matrix are the same flat waves and they are
lower than the energy of ground state energy or the energy of zero point of move-
ment volume equal to zero, p = 0 and they have the function of stable wave equal to
do(r) = V2. Density matrix is only depending on s=r —r’ and we can writeis as
the following form:

@) _ NO 1 —ip.s/h
n (S)—7+V;npe (9)

It is observed that in the confines of s— oo, the total of (X) which iswritten on
the right side of the above statement will equal to zero because of the destructive
interactions between different flat waves. But, the first statement will remain as
such. Thus, it is noted that by existence of BEC, one-body density matrix, in long
and remarkableintervalstend to a stable and definite value. Instead p = O related to
the space of movement volume will appear as the following:

n(p) = No3(p) + ;}npﬁ(p— P) (10

Thetotal of () whichiswritten ontheright side of the above statement indicates

the number of non dense bodies of (N-N,) and thevalue of No/ N iscalled condensate
fraction. But, if we have heterogeneous system, special function related to density
matrix are not the same flat waves. But if N which was creates is big enough and
the notion of BEC still remained, one microscopy occupation of the specia one-
body function, means ¢o(r) will be alongside density matrix. Therefore, dense bosons

can be described as a function of y(r) =,/Ny,(r) ,» which is actually a complex

classic field which plays the role of order parameter. It should be mentioned that
thiscaseisexactly similar to classic confinesin quantum thermodynamicsin which
electromagnetic field is replaced by the microscope photon definition. Function y
may depend on the time variable (t). In this case, we can write it as the following:

w(r, ) =[w(r, e (11)

This determines the absolute value of diagonal density condensate portion;
where as phase S can properly indicate the phase factors and beyond fluidity of the
system. Order parameter whichisin egn. 11 is called microscopy wave or function
of condensate wave, isonly described according to astable phase factor. We always
can multiply thisfunction to numerical phasefactor of €* without having any changes
in physical properties or creating new physical state. In fact, this subject reflects
gauge symmetry whichis delivered by all physical equations. Therefore, a definite
selection for the value of order parameter will be created and thus, one conven-
tional fracture occurs in gauge symmetry for phase.
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After Einstein had reviewed the paper of an Indian scientist, Bose, about photons
statistic and Planck’s distribution, he stated this theory™. But, it took 70 years till
Cornell and Wicman could create BEC in laboratory in 1995. The fact is that in
1924, Indian scientist, Bose, introduced a new statistical method on black body
radiation according to one gas from photo quantum (photon). His study alongside
his contemporaneous scientist, de Broglie, about duality of wave-substance caused
Einstein applied similar statistical method for the gas consist of N non-separatable
body by the mass of m. One of the remarkable results was related to the anticipation
of this fact that in the temperature below of some critical temperature, a definite
fraction of al bodies condensate to the lowest state of body's energy and as pointed
this phenomenon as Bose-Einstein condensation (BEC). For some years, this anti-
cipation was not noticed till in 1938, London argued that BEC can be observed
in the beyond fluidity properties of helium gas in the temperature below 2.17 K.
Ultimately, in 1995 Cornell and Wicman observed BEC in the diluted gases which
arelocked in the magnetic traps and were refrigerated up to the multi nano Kelvin.
As aresult of it, a remarkable progress occurred in BEC. An important improve-
ment which was occurred in recent years was observing BEC in very cold gases
such as rubidium?, lithium? and sodium?®. Theses gases are very dilute and by the
approximate of first order it is expected that they have no interaction with a model
of simple boson gas. These experimental studies caused excitement of theoretical
studiesin the field of finding physical principles which are dominate on this situation.
For severa aims, it is possible to estimate complex magnetic traps which are used
in this experiment by the harmonic potential oscillator. Despite the situation in
which one Boson gas is not under the external locker potential (free Boson), there
isno critical temperature for Boson gas which isunder the potential (device) which
indicates phase transition. It was indicated that there is a temperature which is
more in the special heat and can be considered as a temperature in which BEC
occurs. It was proven that agas of the Boson gases aside interactions, in the harmonic
potential oscillator has no phase transition in critical temperatures. About a system
of charged Boson gases in a homogeneous magnetic field, a similar situation will
occur. A simple model was studied according to the Bosons with zero normal spin
which is trapped by a harmonic potential oscillator. It is showed that in this case,
BEC can not occur for afree Boson gasin free space and without trapping potential
inasimilar way which occursfor trapped Boson gasesin harmonic potential oscillator
is easily. By reducing temperature for a free Boson gas, chemical potential will
increase from negative values to zero. It should be noted that the temperature in
which chemical potentia isequal to zero isdescribed as a critical temperature (T)
which was determined for body density. In the temperature below T, the chemical
potential will remain zero and the number of particles which are under the excitement
situationislimited. If thetotal number of bodies exceeded from thislevel, BEC can
only occur for the remained bodies which are on the ground state. Therefore, there
is a quantitative and qualitative difference between free Boson gas and a system
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consists of trapped Boson gases in harmonic potential oscillator. Unfortunately, it
isimpossibleto find avalid analytical approximate for special heat which allow us
to find whether special heat isamore value or not and if it is, in which temperature
it occurs. Atoms are trapped in amagnetic potential and it is possible to model this
potential with harmonic potential oscillator. Many studies®® were conducted about
BEC in trapped harmonic potential oscillator. In this paper, condensation of Boson
gases in one harmonic potential oscillator isinvestigated by a method in which the
approximate of states' density is not similar with previous reports®®. In the studies
we come to this interesting conclusion that despite free Boson gases, in this state,
thereis no critical temperature which proves phase transition. Here, atemperature
by analytical and numerical methods is acquired in which special heat is more.
This temperature can be described as a temperature in which BEC will occur.

HERMITIAN FUNCTIONS

Generativefunction: Hermitian functions from the expansion of the function

gix =" =3"H (X)— (12)
n=0
T = 0 will be acquired and then we have:
@2~ 2 _ e t2e2tx

()" & (2tx)
i( 1) (2X) 2n+m

nim!

(13)

M EMS

T
o

m=0

By changing denominator of 2n + m = 1 and omission of m,

2tx t? ( ]( 1) (2X)| i 14

_lzoz(; ni (1 -2n)! 4

[1/2] is a round portion of 1/2. The exponent of n is[1/2], because m = 1 — 2n

should be remained around and positive number. By comparison of (14) and (12) a
series figure Hermit polynomial will be acquired:

[ j( NH"i2n"2" o
Ha () = mZ:‘) mi(n— 2m)I 2 (15)

Some of these polynomials alongside their variation curves are shown in Fig. 1.
Ho(X) =1
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Hi(x) = 2x

Ha(X) = 2x

Ha(X) = 4x* -2

Ha(x) = 8x3 — 12x

Ha(X) = 16x* — 48x° + 12

Hs(x) = 32x° — 160x° + 120x

He(X) = 64x° — 480x* + 720x* — 120

N
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Fig. 1. Hermit polynomials

v

Recessive relations of Hermitian functions. We derivate (12) with t:

(2X _ 2t)e—t +2tX ZO n( ) 1)|
Applying (12) in (17) and simplifyl ngit:
n+l tn—l
D 2xH, (x) — D 2H,( ZHn(x)mw

(16)

(17)

(18)

By selecting coefficient of generaJ term of t” and equaling it to zero, the first

recessive relations of Hermitian functions will acquire.
Hpa(X) =2xH, (x) —2nH ,_;(x)
This time we derivate (12) with variable x:

n
otet *ZtXZH'n(x)t—'
nt

n+1

and D 2H, (x) ->2H, (x)— =0
At the end, by selecting coeffici ent of general term of t";
Ha(X)=2nH 4 (x)

(19)

(20)

(21)

(22)
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By putting x = 0in (12):

" o0 tn
e’ =) H,(0— 23)
s n!
And extension of the (23) left side:
S o SHY 24
n=0 n n=0 n
By equaling equivalent terms, the following values will be acquired:
n (2n)!

H2n+1(0) =0, Hy, 0)=(-2) (25)

nl
On investigating the behaviour of Hermitian functions under the parity can be
interesting and for its generative function, we have:

g(x,t) = g(-x,~1) (26)
and/or D H, (X):]—! =Y H,(-) (_r:!) (27)

as aresult:
H,(X)=(=1)"H,(-x) (28)

Hermitian functions by even fraction are even and by odd fraction are odd.
Hermitian differential equation: By derivation of (19), we have:

Hpoa () = 2H, (%) = 2xH,, (x) = 2nH 4, (x) = 0 (29)
By applying (22) and its derivation:

Hpa(X) =2(n+)H ,(x)

Hn(X) = 2xH,,_(x)
In equation (29) Hermitian differential equation will be acquired:

H, (X)—2xH, (X)+2nH,,(x) =0 (31)
Integral figures of Hermitian functions. For acquiring integral figures of

Hermitian functions, we multiply (12) to t™'dt and on the closed path, we inte-
grate around the zero point (Fig. 1).

(30)

X efterZIX 0 Hn(X) X tn 0 Hn(X) .
LN—IM dt_nzzc; = e dt_nzzc;—n! 2nid,,  (32)
And by its simplification:
n ex e—t2+2tx
H,(X)=— | N———dt 33
() 27'C| J.c tn+1 ( )
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Fig. 2. Integral path of Hermitian functions

By changing the variablet — x —t in (33), we will have:

_t24x2

-1)"n! px
Hn(X):( )-nJ.N(te_X)nJrldt (34)

2ni  Je

The part of integration of ¢ in (34) is a closed one around x point. From the
comparison of (34) by the formulaof nth derivation of hybrid functions, the differ-
ential figures of Hermitian functions will be acquired, it means:

2 dn e7)(2
dx"
Intentional of Her mitian functions. The operation of Hermitian differential

equation isnot self-adjunct. For making itself-adjunct, we should multiply the equa-
tion by f(x) function:

H,(x)=(-1)"¢e (35)

£(x) 1 [ .
X) = e =e 36
P (X) (36)
Then,
e H (x)—2xe ¥ H,, (x) + 2ne 'H  (x) = 0 (37)

On the other hand, the roots of equation ¢** — g are equal to * «, thusit can
be written as:

jw H, (XH, (x)e*dx=0 m=n (38)

Dueto calculate (38) for m = n we consider generative function of (12). Thus,
by multiply to itself, we have:

e—12_52+2tx+25x — Z z H ) (X)H N (X) t

nsm
== niml

(39)

And by multiplying the current equation to ¢** and integration of it, we will
have:

© 2 x2 24 2tx+25¢ o 1"
'[ e dx:E E
—o0 nim!

n=0 m=0
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[ Ha0oH ()6 dx (40)
And by applying (38):

- 2 (tg)"
eZtsJ e—(x—t—s)2 dx = z ( )2
- n=0 n!)

[ H, 0017 dx (41)
For calculating the integral of the left side of the egn. (41):

2s O (ts)"
Yre _Zo n)>

[GRCORCR:® (42)

At the end by expansion of ,/re?'s and setting equivalent terms and combining
the result of (38) toit:
J.w Hn(x)Hm(x)e‘deX =2"nl/nd (43)
—0 m,n
Expansion of f(x) function according to the Hermitian functions. Since

Hermitian functionsin (—ee,c0) toward the weight function of ¢**, create acomplete
set, thus for optional function of f(x), it can be written:

f) =2 cHa(x) (44)
n=0
By multiplying (44) in Hm(x)e,xzdx and integrating (—eo,%0), we will have:
j T H, (e X dx = ¢, j “H,(0OH,, (x)e ™" dx (45)
- n=0 -
And by applying the result of (43):
1 o 2
C,= f(x)H, (x)e™ dx
znn!ﬁj_w (X)H, (x) (46)

will be acquired.
Harmonic potential oscillator: Now inthefirst section of thisdiscussion and
before any other cases, we use Hermitian functions due to solve time-independent

1
Schréndinger's equation for harmonic potential oscillator, V(X) = 3 Mo’X” . Time-

independent Schrondinger’s equation for the above mentioned potential is:

_ % u'(x) + %mmzxzu(x) = Eu(x) (47)



2602 Adib et al. Asian J. Chem.

The above equation will be as following by changing the variables of

mo 2E
y=‘/—x and e=—":
h ho

u'(y)+(-y?)u(y) =0 (48)

By choosing u(y) = e’%f (y) and put it in the equation (48):

f*(y) -2yf'(y) + (e -Df(y) =0 (49)
Will be acquired which isthe same asHermit differential equation. Of courseit

y2

has one differencethat the coefficient of f(y) and 2f (y) cn hasany value.

uy)=e
But, since u(x) should be square integralable, means u(x =) = 0, it is necessary that
€ — 1 should be round multiple of 2. Because the slope speed of f(y) should not be

lower than e’yf . For ¢ — 1 = 2n, the answers of the equations of (49) should n=be

the same of Hermit functions, it means:
f"(y) —2yf'(y) + 2nf(y) =0 (50)

and  f (y)=H,(y)
Therefore, the special value or the levels of the oscillator's energy will be equal
to:

1
-1=2n=E=|n+= |h
: (3o )

At the end, by using the definition of intentional of Hermitian functions, the
special value of normalized functions of the harmonic oscillator will be equal to:

N
2

Uy(Y)=——2—e ZH,(y)
2 " (52)

Up(x) = (-1

(“:”j 2.[mwj‘l‘.e[2”ﬁ’)x2_ a T

- e
2n"n! 7h dx" (53)

It isassumed to describethisdevice by macro canonical ensemble. Oneensemble
is described as following:

q=-3 In(L-zexp(-BEy)) (54)
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In which 8 = (kT)™ and Ey are the energy of levels. z = € is described as a
fugicity of the device which isafactor according to the chemical potential of . By
expansion of logarithm in the equation 54, we can acquire the following equation:

0

Zn
=>"=-> " exp(- nBE, ) (55)
n=1 n n
For a harmonic oscillator by the angle frequency of o, the levels energy are

3
given by the relation of Ennn, = hw[nl +Ny +Ng +Ej' If weputn,+n;+ns=K

(K+D)(K+2) b

and (Ke N) init, thelevels energy isarranged with pluralism of 5

3
the manner of Ex —[K +§Jh®. By execution of addition on the egn. 55, the

following equation is obtained:

o o)
=2 ey 0

ho
In this equation, we enter non dimension variable of X = W Number of particles

will be acquired from the following equation:

n= B‘l(g—SjT,w (57)

By using egn. 56, we have:

eﬂﬁ(u—%hwj -
N = Zm (58)

For keeping the number of particles positive and limited, it is necessary to have

3 h
USEhw inwhich hEZ_n isaDirac constant. Generally, it is necessary that p< Eo

inwhich Eo is ground state energy or zero point or the lowest state. Commonly, the
critical temperature for BEC is atemperature in which = Eq. For harmonic oscillator

3
HZEhw . Now, it iseasy to indicate that BEC can not occur in Boson gasesin free

space in away which is occurring for trapped Boson gases in harmonic oscillator.
About Boson gases in free space without any limitative potential, besides the
reduction of temperature, the chemical potential will arise from negative values to
zero and it is completely compatible with the general result of p = E, which was
mentioned above (the lowest energy level or ground state energy or energy level of



2604 Adib et al. Asian J. Chem.

zero point for free Boson gas is equal to zero). It should be mentioned that the
temperaturein which p= Oiscalled the critical temperature of T.. Thistemperature
is determined according to the density of bodies and particles. For free Boson gas
in the temperature lower than T, pwill remain in zero value and since the number
of particlesislimited in excited state, therefore, when the number of particles exceed
from the maximum number of the excited state, only possibility for remained particle
isremaining in ground state. This case will result BEC and itsfull detailsare given
in any book of statistical mechanics or thermodynamics’®. The root of differences
in the behaviours of free Boson gas and trapped Boson gasis related to the number

3
of particles of the ground state with the energy of 5 ho . Here, besides the quantity

3
of x non-dimension, the quantity of {“ = h"{g - 3]} isintroduced. Level of e — s

is correspondent with the chemica potential which reaches critical values. The
number of particlesin the ground state according to x and € are:
1
e” -1
For ¢ — 0, the ground state N will tend to infinite. For adefinite value of x and
N (the total number of particles in the ground state and in the excited state) from

NCa:

(59)

1 (N+12)
the equation 59, it is observed that € > ; In N and e will bezeroif T— 0

or N — . Asitisindicated in equation 59, for one constant N once € become small
sufficiently, necessarily only the ground state will be occupied. The temperaturein
which the ground state starts to increase number of particles remarkably, is very
important and essential. This remarkable increase will occur by the smooth and
gradual changes of temperature, so that despite the behaviour of free Boson gas, no
phase transition will be observed. In other word, although quantities will change
fast, but any transition will occur gradually and no discontinuity will be seen. Specia

h
heat will be in the level of high temperature, when X=k—$=1, asfollowing:
C_128:(4) | &) | 28r(2) 128:(3) 18:°CR(2)ER(3)
k x3 x2 X x2 x3
2 2 2 2 60
_ % &3(3) + % &R(zzgR(S) +o(|nX,£j (60)
X X X

Also, in thislevel, we have:
)
~—¢[Er(2)
N—N@+§j(§3)+(2 +O£Inxj (61)

x? X
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The above results deliver agenera description on the total range of the considered
temperature for the tests which were executed in thisfield. For instance, we choose
the parameters which were used for rubidium atoms. In this case, N = 3000 and

2—0;260 Hz . 1t is aimed to calculate the chemical potential which is given by ¢ (it

3
should be remark that {” = h‘”(; - 8)} ). Thiscalculation can be executed by solving

equation 58 for € as a function of x. The numerical result of this calculation is
indicated as bold lines in the Fig. 3 by the Mathematica software. As it can be
observed in thisdiagram, € drops from the value of the unique order to the value of
107 order on very small range of x. After this fast reduction, € will reduce by the
increase of x (or reduction of T) to zero. This result is inconsistent with the actual
phase transmission such as those which occur in free Boson gas, because in free
Boson gas, € will be equal to zero in non-zero temperature which is called critical
temperature. From N-base from harmonic oscillator it is observed that theimmediate
reduction of ¢ is depend on the immediate increase of occupy number of ground
state. Therefore, this phenomenon will result Bose-Einstein condensation (BEC).
Although, chemical potential has an immediate change, but this changing occurs
evenly. By thisway, it is impossible to identify special critical temperature. One
approximate which is used in the device by the finite volume is the calculation of
specia maximum heat. The temperature in which the maximum temperature occurs
is called the critical temperature. In Fig. 4, we precisely indicate the results of the
specia heat's caculation by the Mathematica software by using harmonic oscillator
setsasabold curve. Asit isindicated in this diagram, special maximum hesat in Xm
= 0/0921 is observed which is according to T = 3/127 x 10°%. In this figure, phase
transition is not observed. For comparison of the above results by the results of
different researches which were done in this case, Fig. 5 isindicated in the potential
of oscillator according to the temperature which was concluded from reference’.
Asitisobserved in the figure, special heat for different values of particles, N, has
no transition. On the other word, as Fig. 4, identification of critical temperatureis
not possible. In Fig. 6, the changes of the special heat according to the temperature
for different number of particles, are shown alongside the exact numerical results'.
DespiteFigs. 4 and 5, the above diagram shows phase transition in the point of F=To.
Also, the executed cal culation by the semi classical approximate and by using three-
dimensional heterogeneous harmonic oscillator, phase transition will be acquired
again'. By all these, in the reference™ it is declared that whenever modification
executed on the calculation, this discontinuity will be eliminated in the curve of
special heat which results actual phasetransition. Inthisorder, it may be concluded
that in the devices by the limited number of particles, there is no phase transition.
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On the other hand, in these kinds of devicesthereisasemi condense areain which the
main part of particlesin thetemperatureis depend on N, will drop to the lowest level
or zero level. 1t should be mentioned that the real tests show these semi-transition>*3.

0.09 0.095 0.1 0.105 0.11

X
Fig. 3. Changes of € asafunction of x for harmonic oscillator

hLL

Cv/ Nkg

B OBE D EGE B4) @l kD DS BB mET IR A0

X
Fig. 4. Changes of Cy as afunction of x for harmonic oscillator

0 ) 0:.2 : 04 : 0:~5 : 0.8
]
Fig. 5. Changes of Cy according to the temperature for harmonic oscillator®
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Fig. 6. Changes of Cy according to the temperature for harmonic oscillator'

Now we will discuss about the analytical calculation of the subject. Since in
the applied approximate the assumption isthat x and € should be very small, results
for x < xm = 0/0921 will face trouble, because the Fig. 3 shows that € for this
definite value of x isvery large. If we describe f as a fraction of bodiesin ground
state, we have:

Nca=fN (62)
In this case, by considering equation 59, we will have:
1
EX = |I’l(l+ mJ (63)
3 (3 2
(1-FN =~ Eg(Ix +(§—sjaR(2)x (64)

€ can be omitted from the equations 63 and 64. Executing this operation results
homogeneous linear third rate by the constant coefficients as ageneral form of x3 +
ax? + aX + a = 0 which is solved as the following in this case:

3a, -a

Q==

(65)

_ 9aa, - 278, — 2a; (66)
54

S=1R+4/Q*+R? (67)
T=yR-JQ*+R? (68)

R
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1
X, =S+ —531

X, = Lt T)—ia1 +Livas-T)
Resolution: 2 3 2 (69)

1 1 1.
x3=—§(S+T)—§al—§|J§(s—T)

From this equation we can assume x for N and f. Additionally, in the batch of
theequations 63, j = ,/—1 , isadelusive number. After determining x by thismethod,
€ can be acquired by the equation 63. The results of this approximate calculation €,
wasindicated in the Fig. 3 asarhombus by the Mathematica software. It is expected,
whenever X reachesto the lower level x.,; 0/0921, compatibility between approximate
result and exact result will be violated. In the area in which the maximum special
heat occurs, these two results will be compatible by each other completely. By
increasing X (so that the temperature be lower than the critical temperature) the
compatibility between approximate value for € and the real value will improve.
Increase of the x value is correspondent by the increase of the particles fractionin
the ground state. Now we will investigate the details of special heat. In second
diagram, the rhombus of the approximate specia heat isdonein thelevel of x = 1,
€ = lisdoneasasimilar way of the done method in thefirst figure. The bold curve
indicates the exact results. Asif isshown in figure, two resultswhich isacquired in
the area of x < X, are compatible. Thus, for the value of x < x.,, this compatibility
will violated. Because in thisareae for different value of X, islarge remarkably. Of
course our calculation is done according to the small €. In the above figure, the
maximum special heat correspond to X.,; 0/0921. This maximum specia heat which
is according to the temperature of this temperature is accumulated remarkably.
This temperature is called transition temperature.

Conclusion

In this paper, the authors execute an analysis from several dynamic variables
for the device consists on interactive bodies by zero spin in the harmonic potential
oscillator and we compare the acquired results from different searches which were
donein thisfield. Although despite what was observed about free Boson gas, there
is no phase transition, but by observing maximum specia hedt, it is possible to
identify the temperature in which BEC occurs. It is shown that this temperature is
remarkably equal to the temperature in which the occupied number of ground state
starts to increase. It should be mentioned that this kind of phase transition, differs
from thereal phase transition which occursin anideal gas. Because due to acquiring
area phase transition, the number of particles and the occupied volume by them
should bevery large. However, the density of particles should be kept constant. Itis
clear that no real device is able to possess these properties. Of course in many
heterogeneous microscopy devices, the thermodynamic level in which boundary
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conditions play unimportant role, isagood approximate for this experimenta situation.
On the other hand, the harmonic potential oscillator in which harmony Bose-Einstein
condensation (BEC) not only the number of particlesarevery limitedin comparision
with the ordinary devices, but, also the boundary condition which is identifies by
the potential well, are spread in the device. Due to provide thermodynamic level in
these kinds of devices, it is necessary to reduce potential so that by increasing of
the number of the particles, the mean of the density be constant. In this case, it may
be assumed that the energy level in the harmonic oscillator continuous as a micro-
scopy device and acquire phase transition as an ideal gas'*.
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