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Based on theoretical calculated molecular structural descriptors from
the solute's structure alone, the electrophoretic mobility of 67 solutes
including 23 organic acids, 18 amino acids and 26 carbohydrates in
capillary electrophoresis were predicted. In order to find the best model,
heuristic method was used to build several multivariable linear models
using different numbers of molecular descriptors. This model gave the
following statistical values; the square of correlation coefficient R2 was
0.968, standard error was 0.0778 and the statistical F-value of 380.82.
Descriptors which appeared in the selected model can account the hydro-
dynamic and dielectric friction forces which affected on the electro-
phoretic mobility of solute. Also in order to evaluate the credibility of
model the leave one cross-validation test and Y-scrambling method were
employed. The statistically results obtained by these tests reveals the
reliability of constructed model.
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INTRODUCTION

Capillary electrophoresis (CE) is a powerful technique for the separation of
varieties of analytes owing to the advantages of high efficiency, high resolution,
rapid analysis and very small value of sample1-3. Ionic analytes can be separated by both
capillary zone electrophoretic (CZE) and micellar electrokinetic chromatography
(MEKC), while MEKC is commonly employed for the separation of non-ionic
compounds. However, the separation of non-ionic compounds can occasionally be
achieved by CZE when using a background electrolyte containing an ionic surfactant
at concentration below the critical micelle concentration, provided that the selective
interactions between neutral analytes and ionic surfactant monomers occur4,5. During
method development in CE to develop an optimized separation conditions, the analysts
generally have to employ a large number of experiments, which is often costly and
time-consuming. Therefore, developing theoretical models to predict the electro-
phoretic behaviour of analytes are interesting and necessary. Today, more and more
investigators have paid attention to this problem and some papers have contributed



to study of quantitative relationship between molecular structures and electrophoretic
mobilities6. Based on the published reports, two principal methods can be summarized,
i.e., the mechanistic and the statistical methods. The mechanistic model is closely
related to the mechanism of electrophoretic separation. The basic expression of
such method is Max Born's model7:
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where q is the effective charge on the ion, fh is hydrodynamic friction force, fdl is
the dielectric friction forces and µ is the electrophoretic mobility of solute.

The statistical models are based on the quantitative structure-mobility relationship
(QSMR). This approach aims to get high predictive performance with relatively
less consideration to the mechanism of separation. One of the most important factors
governing the quality of the QSMR model is the quantitation of structural features,
i.e., the extraction of molecular descriptors. Both new descriptors developed by
oneself and existing descriptors embodied in commercial special software can be
used to build linear or nonlinear models by some techniques such as multiple linear
regression (MLR), artificial neural network (ANN) and support vector machine
(SVM)6,8-12. The advantage of QSMR approach over other methods lies in the fact
that the descriptors which used in the model can be calculated from structure alone
and are not dependent on any experimental properties. So once a reliable model is
established, this model can be used to predict the property of interested compound.
Therefore the quantitative structure-mobility relationship investigation is a useful
method to predict the electrophoretic mobilities of solutes in CZE avoiding long
and tedious separation optimization. QSMR results can also tell us which of the
structural factors may play an important role in the determination of absolute mobility
of the compound. There are some published reports about quantitative structure-
mobility relationship investigations. In one of the early published QSMR studies,
Liang et al.13 used MLR technique to establish a model for predicting the mobilities
of 13 flavonids from their topological descriptors. A comparative study between
MLR and ANN has been carried out employing electrophoretic mobility of 13 sulfon-
amides by Jalali-Heravi and Garakani-Nejad14. The linear models they proposed
were represented as follows:

SACPPCHCHCC 32f10e ++∆+=µ (2)

and

pKCPPCHCHCC 76f54e ++∆+=µ (3)

where µe is the effective electrophoretic mobility, ∆Hf  is the heat of formation of
anions, PPCH denotes maximum positive partial charge on anions, SA represent
the surface area, pK is p-function of dissociation constant and C0-C7 are the model
constants. Then a non-linear 3-4-2 ANN model was generated using ∆Hf, PPCH
and SA as inputs for prediction of the electrophoretic mobilities of anions sulfonamides.
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The authors concluded that the ANN model shows the superiority over the MLR
model. In the previous work, a QSMR model is constructed to estimate the electro-
phoretic mobilities of benzoic acid derivatives by means of a multi-layer neural
network using back-propagation training algorithm15. The standard error of training,
validation and test sets for ANN model are 0.402, 0.952 and 0.716, respectively. In
another work, Wang et al.16 studied relationship between the relative mobility of a
group of 19 chlorophenols in different buffers modified by 8 kinds of different
organic additives in CZE by means of MLR and radial basis function neural net-
work (RBFNN). They used approximate molecular surface area, hydration energy,
dipole moment, highest occupied molecular orbital energy level and polarity of
organic additives as inputs for generated ANN. Their obtained model gives the
correlation coefficient (R) of 0.986 for the training set and 0.980 for the prediction
set. In the present study, QSMR modeling based on theoretical derived molecular
descriptor combined with multiple linear regression analysis was explored to drive
a simple model for the reliable prediction of the electrophoretic mobility of some
amino acids, organic acids and carbohydrates. Resulting model was evaluated for
its reliability by some validation tests.

EXPERIMENTAL

Data set: The electrophoretic mobilities of 67 compounds including 23 organic
acids, 18 amino acids and 26 carbohydrates were taken17. The names and corres-
ponding electrophoretic mobility of these compounds are shown in Table-1. The
effective mobility, µe, for each compound was calculated using the following equation:
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where l and L are the length of the capillary to the detector and the total length of
capillary, respectively, V is the applied potential, Ta is the migration time of anion
and TEOF is migration time of a neutral marker.

Separations were carried out on fused-silica capillaries with 112.5 cm (104 cm
effective length) × 50 µm i.d. with indirect UV detection using 2,6-pyridne dicar-
boxylic acid as background electrolyte. Highly alkaline conditions were used in
order to confer the existence of a negative charge not only on organic anions but
also on amino acids and carbohydrates and to promote their migration toward anode.
Electrophoretic mobilities of these compounds ranged from -5.784 to -0.064 for
oxalate and inositol, respectively.

Descriptors calculation: Since the electrophoretic mobility represents the mig-
ration of solute under a certain applied electric field, it would be strongly related to
the charge, size and topological structure of the corresponding solute. Therefore,
one must calculate some structural descriptors for each solute which can encode
these features of molecule numerically. The build model performance and the
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TABLE-1 
DATA SET OF EXPERIMENTAL AND PREDICTED 

VALUES OF ELECTROPHORETIC MOBILITIES 

Number Name µexp µcalk Error 
1 Oxalate -5.784 -5.136 -0.65 
2 Ascorbate -5.409 -5.358 -0.05 
3 Malonate -5.093 -5.112 0.02 
4 Formate -4.911 -4.814 -0.10 
5 Citrate -4.775 -5.275 0.50 
6 Tartarate  -4.584 -4.073 -0.51 
7 Succinate -4.565 -4.697 0.13 
8 Malate -4.520 -4.925 0.41 
9 α-Ketoglutarate  -4.513 -4.817 0.30 
10 Asp -4.418 -4.335 -0.08 
11 Glutarate -4.196 -4.214 0.02 
12 Glu -4.084 -4.219 0.14 
13 Adipate -3.934 -4.885 0.95 
14 Acetate -3.589 -3.741 0.15 
15 Pyruvate -3.540 -3.985 0.45 
16 Cys-Cys  - 3.514 -3.402 -0.11 
17 Glycolate -3.495 -3.495 0.00 
18 Tyr -3.493 -2.686 -0.81 
19 Gly -3.260 -3.236 -0.02 
20 n-Propioonate  -3.111 -3.141 0.03 
21 Lactate -3.041 -3.142 0.10 
22 n-Butyrate  -2.781 -2.679 -0.10 
23 Levulinate -2.729 -2.800 0.07 
24 Mannuronic acid  -2.647 -2.097 -0.55 
25 Pyroglutamate -2.631 -3.045 0.41 
26 n-Pentanoate  -2.578 -2.423 -0.16 
27 Thr -2.542 -2.409 -0.13 
28 Glucuronic acid  -2.497 -2.200 -0.30 
29 Pro -2.450 -2.523 0.07 
30 Val -2.444 -2.440 0.00 
31 Met -2.389 -2.296 -0.09 
32 n-Hexanoate  -2.385 -2.203 -0.18 
33 Galacturonic acid  -2.337 -1.990 -0.35 
34 His -2.310 -2.423 0.11 
35 Leu -2.300 -2.212 -0.09 
36 Ilu -2.300 -2.505 0.21 
37 Phe -2.22 -2.413 0.19 
38 n-Heptanonate  -2.149 -1.897 -0.25 
39 Gluconate -2.060 -1.901 -0.16 
40 Lys -2.026 -2.058 0.03 
41 Trp -1.910 -2.413 0.50 
42 NGNA -1.719 -1.439 -0.28 
43 n-Octanoate  -1.707 -1.551 -0.16 
44 NANA -1.675 -1.621 -0.05 
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Number Name µexp µcalk Error 
45 N-Acetylmannosamine  -1.221 -1.246 0.03 
46 Ribose -1.037 -1.219 0.18 
47 Ribose -0.983 -0.803 -0.18 
48 N-Acetylglucoseamine  -0.975 -1.235 0.26 
49 Mannose -0.966 -0.899 -0.07 
50 Mannose -0.935 -1.129 0.19 
51 N-Acetylgalactosamine  -0.919 -1.121 0.20 
52 Ramnose -0.904 -0.816 -0.09 
53 Glucosamine -0.846 -0.589 -0.26 
54 Mannosamine -0.832 -0.561 -0.27 
55 Lactose -0.774 -0.673 -0.10 
56 Arabinose -0.764 -1.244 0.48 
57 Glucose -0.761 -0.800 0.04 
58 Galactosamine -0.725 -0.798 0.07 
59 Lactulose -0.676 -0.504 -0.17 
60 Galactose -0.659 -0.806 0.15 
61 Fucose -0.485 -0.840 0.36 
62 Sucrose -0.291 -0.414 0.12 
63 Trhalose -0.121 -0.149 0.03 
64 Galactitol -0.104 -0.061 -0.04 
65 Xylitol -0.086 -0.069 -0.02 
66 Erythritol -0.076 -0.044 -0.03 
67 Inositol -0.064 -0.047 -0.02 

 

accuracy of the results are strongly depends on the way that the structural represen-
tation was performed. The calculation process of molecular descriptors in the present
work is described as below: the three-dimensional structures of molecules were
drawn using HYPERCHEM 7.0 program18 and exported in a file format suitable
for MOPAC program19. The geometry optimization was performed with the semi
empirical quantum method AM1

20 using the MOPAC 6.0. All Geometry had been
fully optimized without symmetry restrictions. In all case frequency calculation
have been performed in order to ensure that all calculated geometries correspond to
true minima. The HYPERCHEM and MOPAC output files were used by CODESSA
program. This software developed by Katritzky group enables the calculation of a
large number of quantitative descriptors based on the molecular structural informations
and codes this chemical information into mathematical21. CODESSA can calculate
5 classes of descriptors which are: constitutional (number of various types of atoms
and bonds, number of rings, molecular weight, etc.); topological (winner index,
randic indices, Kier-Hall shape indices, etc.); geometrical (moment of inertia, mole-
cular volume, molecular surface area, etc.); electrostatic (minimum and maximum
of partial charges, polarity parameters, charged partial surface area descriptors,
etc.) and quantum chemical (reactivity indices, dipole moment, HOMO and LUMO
energies, etc.).
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Selection of the descriptors:  Since it is not possible to know a priority which
descriptors are most relevant to the problem at hand, a comprehensive set of descri-
ptors is usually employed, chosen based on experience, software availability and
computational cost. The heuristic multi-linear regression procedures available in
the framework of CODESSA program were used to perform a complete search for
the best multi linear correlations with a multitude of descriptors. This procedures
provide colinearity control (i.e., any two descriptors inter-correlated above 0.80 are
never involved in the same model) and implement heuristic algorithm for the rapid
selection of the best correlation, without testing all possible combinations of the
available descriptors. The heuristic method of descriptor selection proceeds with a
pre-selection of descriptors by eliminating (i) those descriptors that are not available
for each structure, (ii) descriptors having a small variation in magnitude for all
structure, (iii) descriptors that give a F-test's value below 1.0 in the one-parameter
correlation and (iv) descriptors whose t-values are less than the user-specified value,
etc. This procedure orders the descriptors by decreasing correlation coefficient when
used in one-parameter correlation coefficient. The next step involves correlation of
the given property with (i) the top descriptor in the above list with each of the
remaining descriptors and (ii) the next one with each of the remaining descriptors,
etc. The best pairs, as evidenced by the highest F-values in the two-parameter corre-
lations, are chosen and used for further inclusion of descriptors in a similar manner.
The heuristic method usually produces correlations 2-5 times faster than other
methods with comparable quality22. The rapidity of calculations from the heuristic
method renders it the as a suitable method of choice in practical research.

RESULTS AND DISCUSSION

Table-1 shows the observed and calculated electrophoretic mobility of all compounds
studied in this work. For selection of the best MLR model, the credibility and goodness
of models are tested by calculation of coefficient of multiple correlation regression
(R2), the F-test value (F) and the standard error of the model (SE). The stability of
the correlations was tested against the cross validated coefficient, R2

cv. The R2
cv

value describes the stability of a regression model obtained by focusing on of the
sensitivity of model to the elimination of any single data point. Briefly, for each
data point, the regression is recalculated with the same descriptors but for the data
set without this point. The obtained regression is used to predict the value of this
point and the set of estimated values calculated in this way is correlated with the
experimental values. In this way a variety of subset size was investigated to determine
the optimum number of descriptors in a model. Figs. 1 and 2 shows the influences
of the number of descriptors in the model on the R2

cv (Q2 for cross - validation test)
and standard error of models, respectively. From these figures, it can be seen that 5
descriptors appear to be sufficient for a successful regression model. The specification
of selected model summarized in Table-2. Also the correlation matrix of these descri-
ptors was shown in Table-3. The linear correlation coefficient values of each two
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TABLE-2 
SPECIFICATION OF MULTIPLE LINEAR REGRESSION MODELS 

Descriptor Notation  Coefficient SE t-test 
DPSA-1 Difference, in PSAs(PPSA1-PNSA1)  DPSA1 0.005 ±0.001  4.608 
HACA-2/TMSA[zefirov’s pc]  HACA2 241.050 ±12.664 23.015 
FNSA-2 Fractional PNSA  FNSA2 43.563 ±1.279 7.589 
Minimum atomic orbital electronic population  MAOEP -6.781 ±2.189 -3.864 
Minimum valency of a C atom  MVCA 12.601 ±1.567 9.930 
Constant  -45.184 ±10.300  
n = 67;  R2 = 0.968; SE = 0.078; F = 380. 
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Fig. 1. Influence of the number of    Fig. 2. Influence of the number of descriptors
descriptors on the R2

cv  on the standard error

TABLE-3 
CORRELATION MATRIX FOR DESCRIPTORS APPLYING IN THIS WORK* 

 DPSA1 MAOEP HACA2 MVCA FNSA2 
DPSA1 1     
MAOEP 0.467 1    
HACA2 0.279 0.163 1   
MVCA 0.321 0.517 -0.025 1  
FNSA2 0.573 0.419 -0.578 0.187 1 

*The definition of notations are given in Table-2. 

descriptors are less than 0.60 (Table-3), which means that selected descriptors were
independent in this multi-linear analysis. The obtained model has a correlation
coefficient R2 = 0.968, F = 380.82, with SE = 0.0778 and the cross-validated corre-
lation coefficient R2

cv = 0.961. The risk of chance correlation in the obtained model
is verified also by Y-scrambling procedure. In this method, the dependent variable
vector, Y-vector, is randomly shuffled and a new QSMR model is developed using
the original independent variable matrix. This process is repeated several times.
The obtained R2 for less than 1 % of all scrambled Y-vectors have a correlation with
the original Y-values that is higher than R2 = 0.2 (95 % below R2 = 0.15). These
results reveals that the proposed model is well founded and not just the result of
chance correlation.
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By interpreting descriptors in the regression model it is possible to gain some
insight into factors that are likely to govern electrophpretic mobility of a solute. As
mentioned in the introduction section two fundamental frictional forces are important
in the electrophoretic mobility of a solute in CE. One is hydrodynamic friction
factor, which is related to the molecular size and/or mass of solute and the other is
dielectric friction factor, which is related to the charge distribution within the solute
and caused by the orientation of the solvent dipole in response to the ionic charges.
As can be seen from Table-2, there are five descriptors in the obtained MLR model.
The first descriptor is DPSA1, which is the difference between PPSA1 (atom charged
weighted partial positive surface area) and PNSA1 (atom charged weighted partial
negative surface area) and is related to the positive and negative charge distribution
and also to the respective surface area in a molecule23. The second descriptor was
HACA-2/TMSA [Zerfirov,s PC] (HACA2) which is CPSA (charged partial surface
area) descriptors and have been proposed by Jurs et al.24. This descriptor is the ratio
of hydrogen acceptors charged surface area to the total molecular surface area and
denote the sum of solvent-accessible surface area of the H-bonding acceptor
atoms. As the HACA2 increasing, the proportion of the H-donors surface area among
the total molecular surface is increase and the formation of the H-bond became
easier. The third descriptor which appeared in the selected model was fractional
negative surface area (FNSA2). FNSA2 is defined as the ratio of the atomic charge
weighted partial negative surface area, (which is obtained by summation of products
of the individual atomic partial charges and the atomic solvent-accessible surface
area) to the total molecular surface area25. This descriptor is expected to encode the
features responsible for polar interactions between molecules. The forth descriptor
was minimum atomic orbital electronic population (MAOEP) and the last one was
minimum valency of carbon atoms (MVCA). As can be seen all of these molecular
parameters are electronic type descriptors which can account for dielectric friction
factor in the whole. On the other hand the since first three descriptors (DPSA1,
HACA2 and FNSA2) are related to the molecular surface area and charge distribution
among of this surface, therefore they can encode some information about the hydro-
dynamic friction forces.

Fig. 3 represents the plot of cross-validation predicted electrophoretic mobility
of interested molecules against their experimental values. Also the residual of cal-
culated electrophoretic mobilities from their experimental values are shown in Fig.
4. The propagation of residuals at both side of the zero line indicates that there
aren't any systematic errors in obtained model.

Conclusion

The heuristic method was used to construct a linear quantitative structure-
mobility relationship model for the prediction of electrophoretic mobility in capillary
zone electrophoretic (CZE) of a set of organic acid, carbohydrate and amino acids.
The performance of model was evaluated by cross-validation test and Y-scrambling
methods. The obtained results of these tests reveal that the constructed linear model
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Fig. 3. Plot of the cross-validation calculated mobility against the experimental values

 

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0

R
es

id
ua

l

                                                              µο  ( EXP ) 

Fig. 4. Plot of the residuals versus experimental values of mobilities

was satisfactory. Descriptors appeared in the model can account the hydrodynamic
and dielectric friction force which affected on the electrophoretic mobility of solute
in capillary electrophoresis. Furthermore, the proposed approach also can be extended
in other QSMR investigation.
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