NOTE

Synthesis and Characterization of $\mathrm{Al}($ III) Complex of 1,3,5-Hexahydrocyclophosphazene

Atul Vashistha and S.P.S. Jadon*
Department of Chemistry, S.V. College, Aligarh-202 001, India
E-mail: sps_jadon@yahoo.co.in

Abstract

The reaction product of $\left(\mathrm{NPCl}_{2}\right)_{3}$ with Al (III) chloride was synthesized and its characterization, are being reported herewith with the help of mass, IR and EPR spectra, assigning its dimeric nature of the complex as $\mathrm{Al}\left(\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{H}_{2}\right)_{3}$.

Key Words: Al(III) complex, 1,3,5-Hexahydrocyclophosphazene.
Due to lone pair of electrons present on N atom of $\left(\mathrm{NPCl}_{2}\right)_{3}$, different complexes and adducts of $\left(\mathrm{NPCl}_{2}\right)_{3}$ with metals have been reported ${ }^{1-4}$. It's reduced product, hexahydrocyclotriphosphazene $\left(\mathrm{NPH}_{2}\right)_{3}$ synthesized ${ }^{5}$ was also used as ligand to prepare its complexes ${ }^{6-8}$. The reaction product of $\left(\mathrm{NPH}_{2}\right)_{3}$ with $\mathrm{Al}(\mathrm{III})$ chloride was synthesized and characterized.

1,3,5-Hexahydrocyclophosphazene $\left(\mathrm{NPH}_{2}\right)_{3}$ was prepared by the reduction of $\left(\mathrm{NPCl}_{2}\right)_{3}$ with sodium ethoxide. The white mass, produced, was separated, washed with dry ethyl alcohol and ether, dried and stored in vacuum. The complex of $\left(\mathrm{NPH}_{2}\right)_{3}$ with AlCl_{3} was prepared by refluxing both in equimolar ratio in DMF for 6 to 8 h .

The white coloured product, obtained, was filtered, washed with chlorobenzene, ethenol and ether. Dried product was stored in vacuum desiccator over fused CaCl_{2}. The complex was analyzed qualitatively and quantitatively by well known methods ${ }^{9}$. XRD and IR Spectra were recorded on PW1710 diffrectometer $\left(\mathrm{CuK}_{\alpha}, \lambda=1.5405\right)$ and FTIR spectrophotometar Shimadau 8201 PC (4000-400 cm^{-1}).

On the basis of analytical data of complex; \% found Al-6.16, N-28.76, P-63.69, $\mathrm{H}-1.36$ and m.w. is $875.5 \mathrm{~g} / \mathrm{mol}$, the complex is termed and assigned as Dihydro Al (III) phosphazenide, $\mathrm{Al}_{2}\left(\mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{H}_{2}\right)_{6}$, which is suported by the prominent mass line at $\mathrm{m} / \mathrm{z}-876$ observed in it's mass spectrum. The formation of complex is also supported by the prominent mass line at $\mathrm{m} / \mathrm{z}-437$ for fragment $\left(\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{H}_{2}\right)_{3}-\mathrm{Al}(\mathrm{M}-1)$. The mass pattern of the complex may be explained on the basis of FAB Fragmentation process (Scheme-I).

The formation of this complex is upheld by vibrations observed in its IR spectrum which is compaired to that of ligand, having the frequencies at $609.9(b, S), 1104.6$ (b,S), 1637.1 (d), 2340.4-2363.9 (d), 3454.8 (b) cm^{-1} shifted to higher region as subsequently for $\mathrm{P}-\mathrm{N} \rightarrow \mathrm{M}, \mathrm{P}-\mathrm{N}, \mathrm{H}-\mathrm{P}-\mathrm{N}$ and $\mathrm{P}=\mathrm{N}$ bands, sugesting that ligand has co-ordinated, through its N atom to $\mathrm{Al}(\mathrm{III})$ and some H atoms have reacted to AlCl_{3} forming and eleminating HCl molecules.

EPR spectra of the complex showed the signals corresponding its paramagnetic character, which is also sustained by the values of $\mu_{\text {eff }}$ and magnetic susceptibility, χ (Table-1). The value of g_{z}, and $g_{a v}$ is greater than the free electrons 2.003 indicating the sharing of electrons of Al atom i.e. aluminium atom has linked with covalent bond to P-N ring alongwith its coordination through N atom of $\mathrm{P}-\mathrm{N}$ rings, because the values of $g_{x}=g_{y}=1.523,1.6838$ and 0.8287 are less than 2.0 corres-ponding to vacant energy cell of Al atom to accept the electron pairs from N -atom of the $\mathrm{P}-\mathrm{N}$ ring. Thus in the complex the covalent bonding as well as coordinate linkage with phosphazene ring persist, suggesting the complex as structure shown in Fig. 1 in dimeric form of $\mathrm{Al}\left(\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{H}_{2}\right)_{3}$.

Fig. 1. Dimeric structure of $\mathrm{Al}_{2}\left(\mathrm{~N}_{3} \mathrm{P}_{3} \mathrm{H}_{2}\right)_{6}$ complex
TABLE-1
EPR SPECTRA OF COMPLEX

Temp.	Magnetic field No. (Gauss)	$\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{\mathrm{y}}$	g_{z}	g_{av}	$\mu_{\text {eff }}(\mathrm{BM})$	$\chi \times 10^{-3}$ esu
RT	2325	1.5523	2.8378	2.7140	1.7938	1.3411
LNT	2522	1.6838	2.6161	2.0424	1.7687	1.3038

From XRD spectrum for the complex, recorded in 2θ range form 170 to 840 the values of $\sin ^{2} \theta$, hkl and interplanner distance "d" were calculated (Table-2). The values of "d" are in close agreement to theoretical once. The values of axial ratios $\mathrm{a}_{0}=\mathrm{b}_{0}=4.7506 \AA$ and $\mathrm{c}_{0}=3.8793 \AA$ and axial angles $\alpha=\beta=90^{\circ}$ and $\gamma=$ 120°, expounds hexagonal geometry of the complex.

TABLE-2
X-RAY DIFFRACTION PATTERN OF COMPLEX

$2 \theta\left({ }^{\circ}\right)$	$\operatorname{Sin} \theta$	$\operatorname{Sin}^{2} \theta$	$\left(\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right) \mathrm{Q}$	Hkl	$\mathrm{d}(\AA)$ obs.	$\mathrm{d}(\AA)$ theo.
17.685	0.1537	0.0236	1 X 0.0236	100	5.0110	5.0112
19.030	0.1653	0.0273	1 X 0.0273	100	4.6597	4.6571
22.850	0.1980	0.0392	1 X 0.0392	100	3.8886	3.8868
25.540	0.2210	0.0488	2 X 0.0244	110	3.4848	3.4847
28.025	0.2421	0.0586	2 X 0.0293	110	3.1812	3.1816
29.960	0.2584	0.0668	3 X 0.0224	111	2.9800	2.9799
31.680	0.2729	0.0745	3 X 0.0245	111	2.8220	2.8219
32.140	0.2768	0.0766	3 X 0.0255	111	2.7827	2.7826
33.845	0.2910	0.0847	4 X 0.0212	200	2.6463	2.6466
38.620	0.3306	0.1093	5 X 0.0218	210	2.3294	2.3293
45.450	0.3863	0.1492	6 X 0.0248	211	1.9940	1.9943
48.775	0.4129	0.1705	8 X 0.0213	220	1.8655	1.8660
58.750	0.4905	0.2406	10 X 0.0240	310	1.5703	1.5705
75.310	0.6109	0.3732	16 X 0.0233	400	1.2609	1.2607
84.010	0.6691	0.4478	18 X 0.0248	411	1.1511	1.1511

REFERENCES

1. H.R. Allcock, C.A. Crane, C.T. Morrissey, J.M. Nelson, S.D. Reeves, C.D. Honeyman and J. Manners, Macromolecule, 29, 7740 (1996).
2. W.E. Krause, M. Parvez, K. B. Vischer and H.R. Allcock, Inorg. Chem., 35, 6337 (1996).
3. R.P. Singh, A. Vij, R.L. Kirchmeier and J.M. Shreeve, Inorg. Chem., 39, 375 (2000),
4. F. Palacios, C. Alonso and G. Rubiales, J. Org. Chem., 62, 1146 (1997).
5. J. Emsley and P.B. Udy, J. Chem. Soc., 3005 (1970).
6. A. Sundermann, W.W. Scholler and M. Reiher, Inorg. Chem., 38, 29 (1999).
7. S.P.S. Jadon, Asian J. Chem., 15, 151 (2003); 17, 1312 (2005).
8. N. Jain and S.P.S. Jadon, Asian J. Chem., 18, 730 (2006).
9. A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, L.B.S. Publisher New Delhi, India (1968).
