Asian Journal of Chemistry

Electrochemistry of Two Hexa-iron-sulfur Carbonyl Clusters

LI ZHIMEI* and ZHONG WEI

Department of Chemistry, University of Nanchang, Nanchang 330031, Jiangxi, P.R. China Tel: (86)(791)8096558; E-mail: lizhimei@ncu.edu.cn

The electrochemical behaviours of two hexa-iron clusters 1 and 2 are investigated by using cyclic voltammetry. The results show that cluster 1 capture one electron more readily than cluster 2 and the central 6CO can be reduced easier than sub-site 6CO and 5CO in the cluster 1, which are associated with that the electron withdrawing effect of 5CO sub-unit by Fe-S bond is more significant than 6CO bond linkage by S. This conversion can be reversed by continuously purging CO through the solution of the cluster 1.

Key Words: Hexa-iron-sulfur carbonyl clusters, Electrochemistry, Electron withdrawing effect.

INTRODUCTION

Fe-S clusters are found in ferredoxins and other electron transfer proteins, hydrogenases, nitrogenase and in many more proteins and play important role in electrontransfer, catalysis, gene-regulation and the sensing of iron and oxygen¹. It is known that active centre, also called the H-cluster of [FeFe]-hydrogenase consists of an $\{Fe_2S_2\}$ unit and an $\{Fe_4S_4\}$ cubane, they are jointed together through a bridging cysteinate²⁻⁴ (Fig. 1).

Fig. 1. Schematic view of the H-cluster of the [FeFe]-hydrogenase (X = CH₂, NH or O)

Earlier, we reported⁵ synthesis, characterization of two hexa-iron clusters **1**, **2** with $\{Fe_2S_2(CO)_x\}$ (x = 5 or 6) fragments and investigation into their inter-conversion and their structure are shown in Fig. 2. Here we continue to investigate their electrochemistry behaviours.

7376 Zhimei et al.

Asian J. Chem.

EXPERIMENTAL

The methods of preparation and determination of the clusters 1 and 2 were followed as reported⁵.

Electrochemistry was carried out under argon atmosphere or CO atmosphere in freshly dried dichloromethane at a scanning rate of 100 mVs⁻¹ on Autolab Potentiostat 30. Conventional three-electrode system was employed in which vitreous carbon disk ($\phi = 1$ mm) was used as working electrode, vitreous carbon strip as counter electrode and Ag/AgCl (Metrom) as reference electrode whose inner reference solution is composed of 0.05 M [NBu₄]Cl and 0.45 M [NBu₄]BF₄. In dichloromethane, the electrolyte concentration is 0.5 M [NBu₄]BF₄. All potentials were quoted against ferrocenium/ferrocene couple, whose half-wave potential is 0.55 ± 0.01 V against the above Ag/AgCl reference electrode in dichloromethane. The solvent was purchased from Alfa Asear and freshly distilled over P₂O₅ before use.

RESULTS AND DISCUSSION

Cyclic voltammograms of the clusters 1 under Ar and 2 under CO atmospheres are presented in Fig. 3. The cluster 1 exhibits three irreversible reduction processes at -1.39, -1.81 and -1.96 V, respectively with the first one well away from the other two processes (Fig. 3 dash line). As revealed by its structure (Fig. 2, left), the central 6CO sub-unit is flanked by both one 6CO and one 5CO sub-units. It is known that the di-iron sulphur carbonyl motifs show electron withdrawing nature⁶. Thus the metal-metal bond of the central sub-unit will have the lowest electron density compared to the other two metal-metal centres and thus the reduction at -1.39 V is assigned to one electron reduction of the central di-iron core. Due to the electron-withdrawing effects from its two satellite di-iron sub-units, this reduction potential shifts positively by ca. 250 mV compared to that of simple complex, for instance, $[Fe_2(pdt)(CO)_6]^{7,8}$. The remaining two reductions at -1.81 and -1.96 V, are assigned to the 6CO and 5CO sub-units, respectively. Accumulation of electronic effects from successive reductions lowers the potentials for the two di-iron centres by over 100 mV compared to those of the complexes of $\{Fe_2S_2(CO)_6\}$ and $\{Fe_2S_2(CO)_5\}$ moities^{6,7,9} Scheme-I (left panel).

Scheme-I: An overall electrochemical pathways for 1 and 2, for clarity reason, no chemical processes are presented except for the processes involving CO binding/cleaving

7378 Zhimei et al.

Asian J. Chem.

As shown in Fig. 3 (solid line), the cluster **2** in dichloromethane exhibits a broad irreversible reduction peak centred at *ca.* -1.70 V under CO atmosphere. Close examination can reveal that it is multiple processes. As shown in its structure, Fig. 2 (right), there are three sub-units of 6CO sub-unit and the central one is surrounded by another two 6CO sub-units through two bridging S atoms. Based on the same argument as described above for the electrochemistry of **1**, it is suggested that the central sub-unit is first reduced at a potential more negative than that for the cluster **1** and close to the reduction potentials for other simple complexes with ${Fe_2S_2(CO)_6}$ -core^{7,9}. The closely followed processes are attributed to the successive reductions of the two satellite 6CO sub-units, **Scheme-I** (right panel).

Cyclic voltammograms of the cluster 1 under CO atmosphere and the cluster 2 under Ar atmosphere are shown in Figs. 4 and 5 (dotted line), respectively. From Fig. 4 can be seen, the peak current of -1.39 V decreases gradually with the time extending under CO atmosphere, whereas the peak current of -1.60 V grows up. However, from Fig. 5 (dotted line) can be seen that the electrochemistry of the cluster 2 under argon atmosphere has the features of the cluster 1 and the change is not significant even with longer time. All above these indicates the conversion from 1 to 2 involving one CO uptake is much faster than its reverse process.

Fig. 4. Changes in cyclic voltammograms when the solution of **1** is purged with CO in dichloromethane at room temperature

Fig. 5. Cyclic voltammograms of the clusters **1** and **2** under argon atmosphere in dichloromethane at room temperature

It is already reported⁵ that the neutral cluster **2** undergoes conversion to the cluster **1** *via* the nucleophilic attack of one of the bridging S atom on the proximal Fe(I) of its neighbouring 6CO sub-unit and upon the reduction of the central sub-unit, the conversion between **2**⁻ and **1**⁻ is more feasible as the S atom is more nucleophilic, which is supported by DFT calculations. But the presence of CO, the conversion from **2** to **1** is essentially suppressed and so is the conversion from **2**⁻ to **1**⁻. The overall electrochemistry for both clusters is outlined in **Scheme-I**. For simplicity, chemical processes following those reductions are not presented.

Further scanning to cluster 1 at positive scope reveales that there are two irreversible oxidation waves at ca. + 0.45 V and + 0.78 V (Fig. 6, solid line), whereas there is a significant irreversible oxidation peak at + 0.85 V in the cluster 2. In cluster 1, the first oxidation wave is assigned to sub-site 5CO. In cluster 2, the strong peak is associated with the three 6CO units accepting electrons. These are also associated with their electron-withdrawing effect to each other.

Conclusion

The electrochemistry of two hexa-iron clusters 1 and 2 were investigated. Due to the metal-metal bond of the central sub-unit has the lowest electron density compared to the other two metal-metal centres, the first reduction wave of the cluster 1 is assigned to one electron reduction of the central di-iron core. The two clusters undergo interconversion through concomitant Fe-S formation and CO cleavage or *vice versa* and the conversion from 1 to 2 involving one CO uptake is much faster than its reverse process.

Fig. 6. Oxidation peaks of the clusters 1 (C = 2.3 mM) and 2 (C = 2.7 mM) under argon atmosphere in dichloromethane at room temperature

REFERENCES

- 1. R.H. Holm, P. Kennepohl and E.I. Solomon, *Chem. Rev.*, **96**, 2239 (1996).
- 2. J.W. Peters, W.N. Lanzilotta, B.J. Lemon and L.C. Seefeldt, Science, 282, 1853 (1998).
- Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian and J.C. Fontecilla-Camps, *Struct. Folding Design*, 7, 13 (1999).
- 4. A.S. Pandey, T.V. Harris, L.J. Giles, J.W. Peters and R.K. Szilagyi, J. Am. Chem. Soc., 130, 4533 (2008).
- 5. W. Zhong, G. Zampella, Z. Li, L. De Gioia, Y. Liu, X. Zeng, Q. Luo and X. Liu, *J. Organomet. Chem.*, **693**, 3751 (2008).
- 6. C. Tard, X.M. Liu, S.K. Ibrahim, M. Bruschi, L. De Gioia, S.C. Davies, X. Yang, L.S. Wang, G. Sawers and C.J. Pickett, *Nature*, **433**, 610 (2005).
- 7. A. Winter, L. Zsolnai and G. Huttner, Z. Naturforsch., 37B, 1430 (1982).
- 8. S.J. Borg, T. Behrsing, S.P. Best, M. Razavet, X.M. Liu and C.J. Pickett, *J. Am. Chem. Soc.*, **126**, 16988 (2004).
- M. Razavet, S.C. Davies, D.L. Hughes, J.E. Barclay, D.J. Evans, S.A. Fairhurst, X.M. Liu and C.J. Pickett, *Dalton Trans.*, 586 (2003).

(*Received*: 15 May 2009; Accepted: 24 August 2009) AJC-7777