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Electrochemistry of Two Hexa-iron-sulfur Carbonyl Clusters
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The electrochemical behaviours of two hexa-iron clusters 1 and 2

are investigated by using cyclic voltammetry. The results show that cluster

1 capture one electron more readily than cluster 2 and the central 6CO

can be reduced easier than sub-site 6CO and 5CO in the cluster 1, which

are associated with that the electron withdrawing effect of 5CO sub-unit

by Fe-S bond is more significant than 6CO bond linkage by S. This

conversion can be reversed by continuously purging CO through the

solution of the cluster 1.
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INTRODUCTION

Fe-S clusters are found in ferredoxins and other electron transfer proteins, hydro-

genases, nitrogenase and in many more proteins and play important role in electron-

transfer, catalysis, gene-regulation and the sensing of iron and oxygen1. It is known

that active centre, also called the H-cluster of [FeFe]-hydrogenase consists of an

{Fe2S2} unit and an {Fe4S4} cubane, they are jointed together through a bridging

cysteinate2-4 (Fig. 1).

Fig. 1. Schematic view of the H-cluster of the [FeFe]-hydrogenase (X = CH2, NH or O)

Earlier, we reported5 synthesis, characterization of two hexa-iron clusters 1, 2

with {Fe2S2(CO)x} (x = 5 or 6) fragments and investigation into their inter-conversion

and their structure are shown in Fig. 2. Here we continue to investigate their electro-

chemistry behaviours.



Fig. 2. Structure of the clusters 1 and 2

EXPERIMENTAL

The methods of preparation and determination of the clusters 1 and 2 were

followed as reported5.

Electrochemistry was carried out under argon atmosphere or CO atmosphere

in freshly dried dichloromethane at a scanning rate of 100 mVs-1 on Autolab

Potentiostat 30. Conventional three-electrode system was employed in which vitreous

carbon disk (φ = 1 mm) was used as working electrode, vitreous carbon strip as

counter electrode and Ag/AgCl (Metrom) as reference electrode whose inner reference

solution is composed of 0.05 M [NBu4]Cl and 0.45 M [NBu4]BF4. In dichloro-

methane, the electrolyte concentration is 0.5 M [NBu4]BF4. All potentials were

quoted against ferrocenium/ferrocene couple, whose half-wave potential is 0.55 ±

0.01 V against the above Ag/AgCl reference electrode in dichloromethane. The

solvent was purchased from Alfa Asear and freshly distilled over P2O5 before use.

RESULTS AND DISCUSSION

Cyclic voltammograms of the clusters 1 under Ar and 2 under CO atmospheres

are presented in Fig. 3. The cluster 1 exhibits three irreversible reduction processes

at -1.39, -1.81 and -1.96 V, respectively with the first one well away from the other

two processes (Fig. 3 dash line). As revealed by its structure (Fig. 2, left), the central

6CO sub-unit is flanked by both one 6CO and one 5CO sub-units. It is known that

the di-iron sulphur carbonyl motifs show electron withdrawing nature6. Thus the

metal-metal bond of the central sub-unit will have the lowest electron density compared

to the other two metal-metal centres and thus the reduction at -1.39 V is assigned to

one electron reduction of the central di-iron core. Due to the electron-withdrawing

effects from its two satellite di-iron sub-units, this reduction potential shifts positively

by ca. 250 mV compared to that of simple complex, for instance, [Fe2(pdt)(CO)6]
7,8.

The remaining two reductions at -1.81 and -1.96 V, are assigned to the 6CO and

5CO sub-units, respectively. Accumulation of electronic effects from successive

reductions lowers the potentials for the two di-iron centres by over 100 mV compared

to those of the complexes of {Fe2S2(CO)6} and {Fe2S2(CO)5} moities6,7,9 Scheme-I

(left panel).
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Fig. 3. Reduction part of cyclic voltammograms of the clusters 1 (C = 3.8 mM) in argon

atmosphere and 2 (C = 2.7 mM) under CO atmosphere in dichloromethane at

298 K

 

Scheme-I: An overall electrochemical pathways for 1 and 2, for clarity reason,

no chemical processes are presented except for the processes involving

CO binding/cleaving
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As shown in Fig. 3 (solid line), the cluster 2 in dichloromethane exhibits a

broad irreversible reduction peak centred at ca. -1.70 V under CO atmosphere.

Close examination can reveal that it is multiple processes. As shown in its struc-

ture, Fig. 2 (right), there are three sub-units of 6CO sub-unit and the central one is

surrounded by another two 6CO sub-units through two bridging S atoms. Based on

the same argument as described above for the electrochemistry of 1, it is suggested

that the central sub-unit is first reduced at a potential more negative than that for

the cluster 1 and close to the reduction potentials for other simple complexes with

{Fe2S2(CO)6}-core7, 9. The closely followed processes are attributed to the succes-

sive reductions of the two satellite 6CO sub-units, Scheme-I (right panel).

Cyclic voltammograms of the cluster 1 under CO atmosphere and the cluster 2

under Ar atmosphere are shown in Figs. 4 and 5 (dotted line), respectively. From

Fig. 4 can be seen, the peak current of -1.39 V decreases gradually with the time

extending under CO atmosphere, whereas the peak current of -1.60 V grows up.

However, from Fig. 5 (dotted line) can be seen that the electrochemistry of the

cluster 2 under argon atmosphere has the features of the cluster 1 and the change is

not significant even with longer time. All above these indicates the conversion from

1 to 2 involving one CO uptake is much faster than its reverse process.

Fig. 4. Changes in cyclic voltammograms when the solution of 1 is purged with CO in

dichloromethane at room temperature
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Fig. 5. Cyclic voltammograms of the clusters 1 and 2 under argon atmosphere in

dichloromethane at room temperature

It is already reported5 that the neutral cluster 2 undergoes conversion to the

cluster 1 via the nucleophilic attack of one of the bridging S atom on the proximal

Fe(I) of its neighbouring 6CO sub-unit and upon the reduction of the central sub-unit,

the conversion between 2– and 1– is more feasible as the S atom is more nucleophilic,

which is supported by DFT calculations. But the presence of CO, the conversion

from 2 to 1 is essentially suppressed and so is the conversion from 2– to 1–. The

overall electrochemistry for both clusters is outlined in Scheme-I. For simplicity,

chemical processes following those reductions are not presented.

Further scanning to cluster 1 at positive scope reveales that there are two irrever-

sible oxidation waves at ca. + 0.45 V and + 0.78 V (Fig. 6, solid line), whereas there

is a significant irreversible oxidation peak at + 0.85 V in the cluster 2. In cluster 1,

the first oxidation wave is assigned to sub-site 5CO. In cluster 2, the strong peak is

associated with the three 6CO units accepting electrons. These are also associated

with their electron-withdrawing effect to each other.

Conclusion

The electrochemistry of two hexa-iron clusters 1 and 2 were investigated. Due

to the metal-metal bond of the central sub-unit has the lowest electron density

compared to the other two metal-metal centres, the first reduction wave of the cluster

1 is assigned to one electron reduction of the central di-iron core. The two clusters

undergo interconversion through concomitant Fe-S formation and CO cleavage or

vice versa and the conversion from 1 to 2 involving one CO uptake is much faster

than its reverse process.

Vol. 21, No. 9 (2009) Electrochemistry of Two Hexa-iron-sulfur Carbonyl Clusters  7379



Fig. 6. Oxidation peaks of the clusters 1 (C = 2.3 mM) and 2 (C = 2.7 mM) under argon

atmosphere in dichloromethane at room temperature
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