Asian Journal of Chemistry

Vol. 21, No. 9 (2009), 6962-6968

Analytical and Crystallographic Parameters of Cd(II) Complexes Derived from Substituted Schiff Bases

S.L. TURWATKAR* and B.H. MEHTA

Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai-400 098, India E-mail: sandeep.turwatkar@yahoo.co.in

Schiff base ligands were synthesized using 5-nitrosalicylaldehyde with *o*-toluidine, *p*-toluidine, *o*-aminobenzoic acid, *p*-aminobenzoic acid and 2-hydroxy-1-naphthaldehyde with *o*-aminobenzoic acid, *p*-aminobenzoic acid. Cadmium(II) complexes of these Schiff bases were synthesized having the metal:ligand stoichiometry 1:2. The Schiff bases and their metal complexes were characterized for analytical parameters and spectral features. The structures of these complexes were proposed on basis of NMR, UV-Visible, IR spectral data.

Key Words: Schiff base, Cd(II) complexes, Spectral investigations.

INTRODUCTION

Interest in coordination chemistry is increasing continuously with the preparation of organic ligands containing a variety of donor groups^{1,2}. Schiff bases are important class of ligands having many applications³. In recent years, there has been considerable interest in the chemistry of transitional metal complexes of Schiff bases⁴⁻¹¹. Researchers¹²⁻¹⁷ have reported that some drugs have increased activity when administered as metal complexes and number of metal chelates have been used in anticancer and antifungal reagents. The present study deals with the synthesis and characterization of cadmium(II) with Schiff bases obtained by the condensation of 5-nitro salicylaldehyde with *o*-toluidine, *p*-toluidine, *o*-aminobenzoic acid, *p*-aminobenzoicacid and 2-hydroxy-1-naphthaldehyde with *o*-aminobenzoic acid, *p*-aminobenzoic acid and named as L₁, L₂, L₃, L₄, L₅ and L₆, respectively. The Schiff bases and their Cd(II) complexes were characterized for analytical parameters and spectral features.

EXPERIMENTAL

The chemicals used in the present studies were of analytical grade supplied by S.D. Fine Chem (India) and Fluka (Germany). Elemental analysis was carried out in Carl Erba instrument. The metal content of all metal complexes was determined by reported method¹⁸. Molar conductivity of ligands and there Cd(II) complexes were recorded using 1×10^{-3} M solutions in DMF on Toshniwal TSM-15 conductivity meter. The electronic absorption spectra of ligands and Cd(II) complexes were recorded in UV-Visible region using DMF as solvent on UV-Visible 2100 spectro-

Vol. 21, No. 9 (2009)

Cd(II) Complexes Derived from Substituted Schiff Bases 6963

meter supplied by M/s Shimadzu Corporation. Magnetic susceptibility measurements were carried out at room temperature by the Gouy balance method using $Co[Hg(SCN)]_4$ as the standard¹⁹. X-ray diffraction spectra were recorded on X-ray diffractometer supplied by M/s Phillips, Holland.

Synthesis of Schiff bases: The Schiff base ligands L_1 and L_2 were synthesized by refluxing 5-nitrosalicylaldehyde with *o*-toluidine and *p*-toluidine in methanol, respectively. The Schiff base ligands L_3 and L_4 were synthesized by refluxing 5-nitrosalicylaldehyde with *o*-aminobenzoic acid and *p*-aminobenzoic acid in methanol, respectively. Similarly, Schiff base ligands L_5 and L_6 were synthesized by refluxing 2-hydroxy-1-naphthaldehyde with *o*-aminobenzoic acid and *p*-aminobenzoic acid in methanol, respectively. The resulting solution was concentrated then cooled to room temperature and filtered. The yields were recorded in the range of 82 to 88 %.

Synthesis of metal complexes: The cadmium complexes of the Schiff base ligands L_1 and L_2 were prepared by mixing an aqueous solution of cadmium(II) chloride monohydrate with a methanolic solution of the ligand respectively and the cadmium complexes of the Schiff base ligands L_3 and L_4 were prepared by mixing an aqueous solution of cadmium(II) chloride monohydrate with a methanolic solution of the ligand, respectively. Similarly, the cadmium complexes of the Schiff base ligands L_5 and L_6 were prepared by mixing an aqueous solution of cadmium chloride monohydrate with a methanolic solution of the ligand respectively. The resulting mixture was refluxed for 4 h on a waterbath and cooled to room temperature. The pH of the mixture was adjusted to 7 by adding alcoholic ammonia. Subsequently, mixture was digested on waterbath for 1 h whereby solid metal complexes were precipitated and filtered, washed with methanol and dried in oven.

RESULTS AND DISCUSSION

The chemical composition, colour and molar conductance of the ligands and the Cd(II) complexes are summarized in Table-1. The percentage yields of these complexes are satisfactory, ranging between 55 to 65 %. The elemental analysis indicates that the cadmium complexes have a 1:2 metal:ligand stoichiometry. All the complexes are coloured. The solubility of the complexes is very poor in various polar and non-polar solvents. However, they are soluble in DMSO, DMF and nitrobenzene. The molar conductance values are in the range 7.5-9.4 × 10⁻³ Siemens. The low molar conductance suggests their non-electrolytic nature. Literature²⁰⁻²⁶ has reported the complexes with low molar conductance as non-electrolytes. The measurements of magnetic susceptibility suggests that all the complexes are diamagnetic in nature. The complexes are of tetrahedral geometry. Researchers²⁷⁻³¹ have reported tetrahedral geometry for cadmium complexes.

Infrared spectra and UV-visible spectra: In IR spectra of ligand the band pointed in the region 1638-1620 cm⁻¹ is assigned to v(C=N). The lowering of position of these band in the region 1619-1590 cm⁻¹ in corresponding Cd(II) complexes suggest that the azomethine nitrogen atom of ligand is involved in coordination.

6964 Turwatkar et al.

Asian J. Chem.

TABLE-1 PHYSICAL AND ANALYTICAL DATA OF THE SCHIFF BASES AND THEIR Cd(II) COMPLEXES

Commd /		m.w.	m.p. (°C)	Mol. Cond.	Elemental analysis (%):			
ligand	m.f. (colour)	(Yield,	(Decomp.	$\times 10^{-3}$		Found	(Calcd.)	
ligaliu		%)	°C)	Siemens	С	Η	Ν	Cd
L ₁	$C_{14}H_{12}N_2O_3$	256	162	5.7	65.19	4.28	10.44	
	(Yellow)	(84.2)	(-)		(65.62)	(4.68)	(10.93)	-
$Cd(L_1)_2(H_2O)$	$CdC_{28}H_{22}N_4O_6(H_2O)$	622	-	8.6	53.60	3.27	8.70	17.63
	(Yellow)	(62.4)	(310)		(54.06)	(3.53)	(9.00)	(18.07)
L_2	$C_{14}H_{12}N_2O_3$	256	155	9.8	65.15	4.24	10.47	
	(Yellow)	(82.4)	(-)		(65.62)	(4.68)	(10.93)	-
$Cd(L_2)_2(H_2O)$	$CdC_{28}H_{22}N_4O_6(H_2O)$	622	-	7.5	53.66	3.55	8.68	17.58
	(Yellow)	(55.6)	(315)		(54.06)	(3.53)	(9.00)	(18.07)
L_3	$C_{14}H_{10}N_2O_5$	286	264	5.6	58.28	3.84	9.35	
	(Orange)	(86.1)	(-)		(58.74)	(4.19)	(9.79)	-
$Cd(L_3)_2(H_2O)$	$CdC_{28}H_{18}N_4O_{10}(H_2O)$	682	-	7.8	48.89	2.46	7.88	16.09
	(Yellow)	(60.2)	(342)		(49.31)	(2.64)	(8.21)	(16.48)
L_4	$C_{14}H_{10}N_2O_5$	286	235	7.9	58.30	3.77	9.31	
	(Yellow)	(83.4)	(-)		(58.74)	(4.19)	(9.79)	-
$Cd(L_4)_2(H_2O)$	$CdC_{28}H_{18}N_4O_{10}(H_2O)$	682	-	8.6	49.12	2.39	7.76	15.98
	(Yellow)	(61.4)	(356)		(49.31)	(2.64)	(8.21)	(16.48)
L_5	$C_{18}H_{13}NO_3$	291	189	8.6	73.75	4.11	4.46	
	(Yellow)	(85.6)	(-)		(74.22)	(4.46)	(4.81)	-
$Cd(L_5)_2(H_2O)$	$CdC_{36}H_{24}N_2O_6(H_2O)$	692	-	9.4	62.08	3.24	3.56	15.74
	(Yellow)	(64.2)	(320)		(62.48)	(3.46)	(4.04)	(16.24)
L_6	$C_{18}H_{13}NO_{3}$	291	210	6.6	73.83	4.27	4.59	-
	(Yellow)	(87.2)	(-)		(74.22)	(4.46)	(4.81)	
$Cd(L_6)_2(H_2O)$	$CdC_{36}H_{24}N_2O_6(H_2O)$	692	-	9.1	62.14	3.39	3.55	15.94
	(Yellow)	(63.6)	(319)		(62.48)	(3.46)	(4.04)	(16.24)

Maurya and Khurana³² have reported that lowering in the ν (C=N) stretching vibration by 60-20 cm⁻¹ when azomethine nitrogen is coordinated with metal ion. Several authors³³⁻³⁵ have reported lowering of v(C=N) frequency during chelation. The ligand exhibits v(C-O) stretching vibration at 1468-1442 cm⁻¹. In metal complexes v(C-O)phenolic absorption band appears at 1440-1411 cm⁻¹, which is 20-50 cm⁻¹ lower than the corresponding v(C-O) vibration of the free ligand. This indicates bonding of phenolic oxygen to the metal ion³⁶. Literature³⁷⁻⁴¹ have reported that v(Cd-N)and v(Cd-O) stretching vibrations appears in the range of 600-500 cm⁻¹ and 500-400 cm⁻¹, respectively. The involvement of azomethine nitrogen and phenolic oxygen atom of the ligand in the complexation is further confirmed by appearance of new additional bands in the lower region of IR spectra. The absorption band in the range of 649 to 570 cm⁻¹ is assigned to v(Cd-N) while band appearing in the range of 492-408 cm⁻¹ is assigned to v(Cd-O). The electronic absorption spectra of the complexes are dominated by the broad band corresponds to the intra-ligand transition and charge transfer transition. The IR and UV-Visible spectral data is summarized in Table-2.

Vol. 21, No. 9 (2009)

Cd(II) Complexes Derived from Substituted Schiff Bases 6965

TABLE-2 UV-VISIBLE AND IR SPECTRAL DATA OF LIGAND AND METAL COMPLEXES

Ligand /	IR spectral data (cm ⁻¹)				Electronic spectral data (cm ⁻¹) (s = dm ³ mol ⁻¹ cm ⁻¹ × 10 ⁴)	
complex	ν(OH)	v(C=N)	$\nu(C-O)$	v(Cd-N)	v(Cd-O)	Change transfer
L,	3100w	1624s	1468s	-	-	41.665 (2.41)
$Cd(L_1)_2(H_2O)$	3241w	1598s	1411s	607m	438w	31,645 (3.74)
L ₂	3085w	1638s	1442s	-	-	46,728 (3.33)
$Cd(L_2)_2(H_2O)$	3305w	1619s	1430s	611m	492w	27,777 (5.41)
L_3	3125w	1625s	1452s	-	-	41,493 (2.60)
$Cd(L_3)_2(H_2O)$	3264w	1610s	1440s	570m	460w	28,735 (6.99)
L_4	3095w	1622s	1449s	-	-	38,610 (1.42)
$Cd(L_4)_2(H_2O)$	3127w	1615s	1415s	649m	457w	29,069 (6.02)
L ₅	3030w	1620s	1448s	-	-	47,619 (2.39)
$Cd(L_5)_2(H_2O)$	3258w	1599s	1422s	588m	408w	31,545 (10.09)
L_6	3059w	1628s	1456s	-	-	48,210 (2.88)
$Cd(L_6)_2(H_2O)$	3170w	1590s	1438s	590m	415w	31,250 (5.66)

X-Ray diffractogram: The crystal lattice parameters of the complexes were found out by X-ray diffraction method. The X-ray diffractogram of the complexes were recorded in the range 5 to $60^{\circ} 2 \theta$ value. The major refluxes were measured and corresponding d-values were obtained. An independent indexing for each of these refluxes were carried out by least square method. The Miller indices (hkl) were calculated and refined using Back-cal programme by computational method and data has been summarized in Table-3. All the complexes are monoclinic with space group P2/m and crystallized by 16 molecules (Z) per unit cell as reported in the literature⁴².

CRYSTAL LATTICE PARAMETERS OF METAL COMPLEXES Volume Porosity δobs δcal a (Å) β° Complex b (Å) c (Å) $(Å^3)$ (%) (g/cm^3) (g/cm^3) 20.5166 21.0864 28.9838 $Cd(L_1)_2(H_2O)$ 86.77 12508 1.2762 1.3598 6.14 ±0.0580 ±0.2434 ±0.2619 20.1981 22.0554 30.2696 $Cd(L_2)_2(H_2O)$ 86.06 13439 1.2389 1.2656 2.10 ±0.0476 ±0.2070 ±0.3310 30.3480 20.1725 21.9921 $Cd(L_3)_2(H_2O)$ 87.61 13415 1.3157 1.3866 5.11 ±0.0452 ±0.2114 ±0.3130 31.0113 20.3519 23.4386 $Cd(L_4)_2(H_2O)$ 88.87 12192 1.4631 1.5258 4.10 ±0.0382 ±0.1433 ±0.2413 20.5792 21.7278 28.6115 $Cd(L_5)_2(H_2O)$ 86.35 12791 1.3846 1.4751 6.13 ±0.0339 ±0.1954 ±0.0817 20.3523 21.2286 31.0664 86.15 13395 1.3611 1.4086 3.37 $Cd(L_6)_2(H_2O)$ ±0.0497 ±0.1407 ±0.1334

TABLE-3 CRYSTAL LATTICE PARAMETERS OF METAL COMPLEXES

6966 Turwatkar et al.

Asian J. Chem.

¹**H NMR Spectra:** The proton NMR of Cd(II) complexes were recorded using TMS as a reference in DMSO solvent. From the Table-4, it is clear that the spectral data of the cadmium complexes does not show any proton signal to the phenolic OH range. The PMR of the complexes suggests that the phenolic oxygen participates in the coordination, after complete deprotonation. The assignments to the aromatic proton and the phenolic proton are supported by the literature⁴³.

Ligand/Complex	¹ H NMR spectral data (ppm)					
Ligand/Complex -	δ (aromatic)	δ(CH=N)	δ (phenolic)	δ(carboxylic)		
$C_{14}H_{12}N_2O_3$	6.48-7.68	8.72	10.32	-		
	(m, 7H)	(s, 1H)	(s, 1H)			
$CdC_{28}H_{22}N_4O_6(H_2O)$	6.64-7.93	8.45	-	-		
	(m, 14H)	(s, 2H)				
$C_{14}H_{12}N_2O_3$	6.54-7.56	8.92	10.24	-		
	(m, 7H)	(s, 1H)	(s, 1H)			
$CdC_{28}H_{22}N_4O_6(H_2O)$	6.68-7.67	8.86	-	-		
	(m, 14H)	(s, 2H)				
$C_{14}H_{10}N_2O_5$	6.81-7.48	8.84	10.28	14.86		
	(m, 7H)	(s, 1H)	(s, 1H)	(s, 1H)		
$CdC_{28}H_{18}N_4O_{10}(H_2O)$	6.92-7.98	8.24	-	14.45		
	(m, 14H)	(s, 2H)		(s, 2H)		
$C_{14}H_{10}N_2O_5$	6.46-7.82	8.53	10.36	14.82		
	(m, 7H)	(s, 1H)	(s, 1H)	(s, 1H)		
$CdC_{28}H_{18}N_4O_{10}(H_2O)$	6.62-7.92	8.44	-	14.37		
	(m, 14H)	(s, 2H)		(s, 2H)		
$C_{18}H_{13}NO_3$	6.53-7.86	8.53	10.38	14.88		
	(m, 12H)	(s, 1H)	(s, 1H)	(s, 1H)		
$CdC_{36}H_{24}N_2O_6(H_2O)$	6.72-7.98	8.22	-	14.63		
	(m, 24H)	(s, 2H)		(s, 2H)		
$C_{18}H_{13}NO_3$	6.84-7.79	8.47	10.22	14.84		
	(m, 12H)	(s, 1H)	(s, 1H)	(s, 1H)		
$CdC_{36}H_{24}N_2O_6(H_2O)$	6.85-7.92	8.41	-	14.52		
	(m, 24H)	(s, 2H)		(s, 2H)		

TABLE-4 ¹H NMR SPECTRAL DATA OF LIGAND AND METAL COMPLEXES

Conclusion

On basis of analytical data, magnetic measurements and spectral data the complexes may be assigned the following structures as shown in Fig. 1. Vol. 21, No. 9 (2009)

Cd(II) Complexes Derived from Substituted Schiff Bases 6967

where X = o-CH₃, *p*-CH₃, *o*-COOH or *p*-COOH

where X = o-COOH or p-COOH

Fig. 1. Structures of the Cd(II) complexes

ACKNOWLEDGEMENTS

The authors are thankful to Cipla Ltd., ACC Cement Ltd. and Aarti Drugs Ltd. for providing elemental analysis and spectral datas.

REFERENCES

- 1. P. Bhyrappa, J.K. Young, J.S. Moore and K.S. Suslick, J. Am. Chem. Soc., 118, 5708 (1996).
- 2. S.E. Castillo-Blum and N. Barba-Behrens, Chem. Rev., 196, 3 (2000).
- 3. B. Clapham, T.S. Teger and K.D. Janda, *Tetrahedron*, 57, 4637 (2001).
- 4. I. Demir, M. Bayrakci, K. Mutlu and A. Pekacar, Acta Chim. Slov., 55, 120 (2008).
- 5. I. Demir, M. Akkaya, M. Bayrakci and A. Pekacar, Asian J. Chem., 19, 3954 (2007).
- 6. C. Spinu, M. Pleniceanu and C. Tigae, J. Serb. Chem. Soc., 73, 415 (2008).
- 7. H. Keypoura, H. Khanmohammadia, K.P. Wainwright and M.R. Taylor, *J. Iranian Chem. Soc.*, **1**, 53 (2004).
- 8. H. Francisco, A. Nuria, N. Miguel and L. Antonio, Acta Chim. Slov., 47, 481 (2000).
- 9. S. Banerjee, B. Wub, P. Lassahnb, J.B. Christopher and A. Ghosh, *Inorg. Chim. Acta*, **358**, 535 (2005).
- 10. T. Ghosh, S. Bhattacharya and G. Mukherjee, J. Indian Chem. Soc., 81, 449 (2004).
- 11. K. Patel, N. Patel and M. Patel, Synth. React. Inorg. Met.-Org. Chem., 31, 239 (2001).
- 12. S.N. Khattab, *Molecules*, **10**, 1218 (2005).
- 13. J. Liu, B. Zhang, B. Wu, K. Zhang and S. Hu, Turk. J. Chem., 31, 623 (2007).
- 14. U.S. Uh, H. Zhang, C.M. Vogels, A. Decken and S.A. Westcott, *Bull. Korean Chem. Soc.*, 25, 986 (2004).
- 15. V.H. Patel and P.S. Fernandes, J. Indian Chem. Soc., 67, 321 (1990).
- 16. A. Bottcher, T. Takeuchi, K.I. Hardcastle, T.J. Meade and H.B. Gray, *Inorg. Chem.*, **36**, 2498 (1997).
- 17. V. Reddy, N. Patil and S.D. Angadi, E-J. Chem., 5, 577 (2008).
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS-Longman, London, edn. 3 (1969).
- 19. S. Gouy, Compt. Rend., 109, 935 (1889).
- 20. C. Natarajan, C.D. Sheela and P.R. Athappan, Indian J. Chem., 29A, 569 (1990).
- 21. K.H. Reddy and V. Lingappa, Indian J. Chem., 36A, 1130 (1998).
- 22. F. Karipcin and E. Kabalcilar, Acta Chim. Slov., 54, 242 (2007).
- J.C. Byun, D.S. Jung, J.S. Youn, C.H. Kang, S.J. Lee, W.H. Kim, N.H. Lee, G.C. Kim and C.H. Han, *Bull. Korean Chem. Soc.*, 27, 573 (2006).

6968 Turwatkar et al.

Asian J. Chem.

- 24. T. Rosu, S. Pasculescu, V. Lazar, C. Chifiriuc and R. Cernat, Molecules, 11, 904 (2006).
- R.K. Agarwal, L. Singh, D.K. Sharma and R. Singh, *Turk. J. Chem.*, 29, 309 (2005).
- 26. B. Simo, L. Perello, R. Ortiz, A. Castineiras, J. Latorre and E. Canton, *J. Inorg. Biochem.*, **81**, 275 (2000).
- 27. W.D. Philip, E.V. Jagadese and Y. Wu, Can. J. Chem., 70, 779 (1992).
- 28. B.P. Mahapatra and P.K. Bhoi, J. Indian Chem. Soc., 69, 547 (1992).
- 29. B.B. Mahapatra and M.K. Raval, Indian J. Chem., 28A, 434 (1989).
- 30. S.M. Rahman and Vijaykumar, Indian J. Chem., 13, 86 (1975).
- 31. J.S. Dwivedi and U. Agarwal, Indian J. Chem., 13, 501 (1975).
- 32. M.R. Maurya and S. Khurana, *Indian J. Chem.*, **39A**, 1093 (2000).
- 33. R.V. Singh, R. Dwivedi and S. Sharma, J. Indian Chem. Soc., 81, 454 (2004).
- 34. A. Syamal and K.S. Kale, Indian J. Chem., 19A, 486 (1980).
- 35. B.H. Mehta and P. Ghogale, Synth. React. Inorg. Met.-Org. Chem., 31, 247 (2001).
- 36. S.K. Sahani and V.B. Rana, Indian J. Chem., 15, 890 (1977).
- 37. B.H. Mehta and D.S. Joishar, Asian J. Chem., 16, 910 (2004).
- 38. M. Tumer, C. Celik, H. Koksal and S. Serin, Transition Met. Chem., 24, 525 (1999).
- K. Nakamoto, IR Spectra of Inorganic and Coordination Compounds, Wiley, edn. 1, New York (1970).
- 40. N.R. Rao, P.V. Rao and G.V. Reddy, Indian J. Chem., 26A, 887 (1987).
- 41. N. Patel and P.K. Panchal, Synth. React. Inorg. Met.-Org. Chem., 34, 1277 (2004).
- 42. C.R. Jejurkar and K. Parikh, Asian J. Chem., 9, 624 (1997).
- 43. B. Ramachandra and B. Narayana, J. Indian Chem. Soc., 76, 239 (1999).

(Received: 14 November 2008; Accepted: 7 August 2009) AJC-7718

3RD INTERNATIONAL IUPAC CONFERENCE ON GREEN CHEMISTRY

15 — 19 AUGUST 2010

OTTAWA, ONTARIO, CANADA

Contact:

130 Slater Street, Ste 550 Ottawa, ON K1P 6E2 E-mail: jessop@chem.queensu.ca http://www.icgc2010.ca Venue: Westin Hotel Ottawa