Asian Journal of Chemistry

Me₆[14]N₄dieneCu(ClO₄)₂ and Me₆[14]N₄aneCu(ClO₄)₂ Complexes as Catalysts for Hydroxylation of Phenol

JIAN-HONG BI*, BAI-ZHONG LI[†], FU-HOU YAO[‡] and NAI-LIANG HU[†] Deparment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, P.R. China E-mail: bi010101@126.com

The hydroxylation of phenol to hydroquinone and catechol was catalyzed by complexes of copper(II) *i.e.*, $Me_6[14]N_4dieneCu(ClO_4)_2$ and $Me_6[14]N_4aneCu(ClO_4)_2$ using H_2O_2 as oxidant and DMF as solvent. In the presence of the catalysts, the 37.7 % phenol conversion was obtained with 57.7 % selectivity to diphenol for $Me_6[14]N_4dieneCu(ClO_4)_2$ and 35.2 % phenol conversion was obtained with 45.2 % selectivity to diphenol for $Me_6[14]N_4aneCu(ClO_4)_2$ under the optimum reaction.

Key Words: Azamacrocycle, Copper(II) complexe, Catalyst, Phenol, Diphenol.

INTRODUCTION

The dihydroxybenzenes, especially the hydroquinone (HQ) and catechol (CAT), are important organic chemical intermediates and widely used¹⁻³. Direct hydroxylation of phenol with hydrogen peroxide (H_2O_2) as oxidant is one of the most important industrial synthesis methods for hydroquinone and catechol and is now the green catalytic synthesis technology research hotspot^{4,5}. However, few examples were reported that the azamacrocyclic complexes as a catalyst for this reaction^{6,7}.

In this paper, the catalytic activities of the two aazamacrocyclic complexes of copper(II) *i.e.*, $Me_6[14]N_4dieneCu(ClO_4)_2$ (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclic-4,11-dieneCu·2ClO_4) and $Me_6[14]N_4aneCu(ClO_4)_2$ (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazamacrocyclotetradecaneCu·2ClO_4) for the hydroxylation of phenol reaction were studied.

EXPERIMENTAL

All reagents were of AR grade and used without further purification. The $Me_6[14]N_4dieneCu(ClO_4)_2$ and $Me_6[14]N_4aneCu(ClO_4)_2$ catalysts were synthesized according to the literature^{8,9} and characterized by IR spectra and elemental analysis. The products of the catalytic phenol hydroxylation reaction were analyzed using an Agilent 1200 liquid chromatograph.

[†]School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P.R. China.‡Zhejiang Jiuzhou Pharmaceutical Co., Ltd. Taizhou City, Zhejiang 318000, P.R. China.

8200 Bi et al.

Asian J. Chem.

Catalytic activity studies: The catalytic activity study towards the hydroxylation of phenol was carried out in a 50 mL flask fitted with a water-cooled condenser. In a typical reaction, phenol (1.0 g) and the catalyst (10 mg) were mixed in 20 mL of DMF and the reaction mixture was heated to 50 °C with stirring. An aqueous solution of 30 % H_2O_2 (3 mL) was dripped to the reaction mixture slowly and reacted at 50 °C for 5 h. The products were analyzed using an Agilent 1200 liquid chromatograph. Yields of the main reaction product (HQ and CAT) reported in following section were defined as $C_{phen.}$ (mol %) = {([HQ] + [CAT])/[ph]} × 100, where $C_{phen.}$ is the conversion of phenol (%), [ph] is the mol number of phenol in the feed, and [HQ], [CAT] are the mol numbers of hydroquinone and catechol produced.

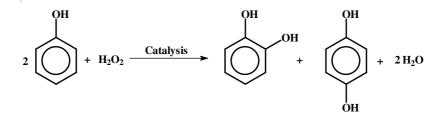


Fig. 1. Hydroxylation of phenol reaction using $Me_6[14]N_4dieneCu(ClO_4)_2$ and $Me_6[14]N_4aneCu(ClO_4)_2$ as catalysts and H_2O_2 as oxidant

RESULTS AND DISCUSSION

Building of liquid chromatographic analysis method: After repeated experiments, the phenol, hydroquinone and catechol could be well analyzed using an Agilent 1200 liquid chromatograph with a ZORBAX Eclipse XDB-C18 4.6 × 150 mm column (Fig. 2). The mobile phase was methanol and water ($V_{CH_3OH}/V_{H_2O} = 2:3$), the flow velocity speed is 0.6 mL/min at 25 °C and UV-vis detection ($\lambda = 277$ nm). Resorcinol is internal standard and the minimum separation degree (R) is 1.4.



Fig. 2. Chromatogram of hydroquinone (1), resorcinol (2), catechol (3), phenol (4)

Vol. 22, No. 10 (2010) Copper(II) Complexes as Catalysts for Hydroxylation of Phenol 8201

Studies of the reaction conditions of the hydroxylation of phenol: In order to achieve suitable reaction conditions for the maximum hydroxylation, the following experimental parameters such as reaction temperature, reaction time, pH value and H_2O_2 /phenol molar ratio were studied in order to observe their effect on the reaction product pattern.

Effect of reaction temperature: The phenol conversion and product selectivity in reaction temperature range of 20-85 °C were studied. After many experiments, 50 °C was choosen as a suitable reaction temperature condition.

Effect of reaction time: The influence of reaction time on the catalytic activity of the two azamacrocyclic copper(II) complexes catalysts was studied at 50 °C. With the increase of reaction time, phenol conversion increased. After 5 h, the reaction achieves steady-state, so the suitable reaction time is about 5 h.

Effect of pH value: The acidity of reaction medium also has a remarkable influence on the phenol conversion. The experimental results showed that the suitable reaction pH is about 4.6.

Effect of H_2O_2 /phenol molar ratio: The effect of the H_2O_2 /phenol molar ratios on the phenol conversion and H_2O_2 conversion was studied. A lower molar ratio of H_2O_2 /phenol in the reaction leads to low phenol conversion and a higher H_2O_2 / phenol molar ratio may lead to high by-product. The experimental results showed that the suitable H_2O_2 /phenol molar ratio is about 3.

Catalysts for hydroxylation of phenol: The catalytic results of the hydroxylation of phenol reaction are listed in Table-1. It can be seen from Table-1 that $Me_6[14]N_4$ dieneCu(ClO₄)₂ and $Me_6[14]N_4$ aneCu(ClO₄)₂ catalysts have high phenol conversion and certain catalyzed selectivity for the hydroxylation of phenol.

TABLE-1 CATALYTIC ACTIVITY IN THE HYDROX YLATION OF PHENOL WITH $\rm H_2O_2$				
Catalysts	Phenol (%)	Selectivity (%) HQ CAT		- HQ/CAT
Me ₆ [14]N ₄ dieneCu(II)	37.7	36.3	21.4	1.70/1
Me ₆ [14]N ₄ aneCu(II)	35.2	25.4	19.8	1.28/1

Reaction conditions: reaction temperature 50 °C, reaction time 5 h.

 H_2O_2 /phenol (molar ratio) about 3, solvent: DMF, pH = 4.6.

Conclusion

The research results show that the $Me_6[14]N_4aneCu(ClO_4)_2$ and $Me_6[14]N_4dieneCu(ClO_4)_2$ catalysts exhibited good catalytic activity and certain catalytic selectivity in the reaction of hydroxylation of phenol with H_2O_2 as oxidant, under mild reaction conditions.

ACKNOWLEDGEMENT

This work is financially supported by the National Natural Science Foundation of China (No. 20871039).

8202 Bi et al.

Asian J. Chem.

REFERENCES

- 1. W.F. Hoelderieh, *Caral. Today*, **62**, 115 (2000).
- 2. J.H. Bi, L.T. Kong, Z.X. Huang and J.H. Liu, Inorg. Chem., 47, 4564 (2008).
- 3. J.L. Grieneisen, H. Kessler, E. Fache and A. M. Le Govic, *Micropor. Mesopor. Mater.*, **37**, 379 (2000).
- 4. H.S. Abbo, Salam J.J. Titinchi, R. Prasad and S. Chand, J. Mol. Catal. A-Chem., 225, 225 (2005).
- 5. K. Chaudhari, T.K. Das, P.R. Rajmohanan, K. Lazar, S. Sivasanker and A.J. Chandwadkar, J. *Catal.*, **183**, 281 (1999).
- 6. J.H. Bi, Acta Cryst., E65, m633 (2009).
- 7. J.A. Martens, P. Busken, P.A. Jaeobs, A. van der Pol, J.H.C. van Hooff, C. Ferrini, H.W. Kouwenhoven, P.J. Kooyman and H. van Bekkum, *Appl. Catal. A*, **99**, 71 (1993).
- 8. J.H. Bi, W.T. Bi, Z.X. Huang and N.L. Hu, Asian J. Chem., **21**, 6619 (2009).
- J.H. Bi, J.M. Song, Z.X. Huang, Y.H. Wang, L.T. Kong and N.L. Hu, Asian J. Chem., 18, 2365 (2006).

(Received: 26 April 2010; Accepted: 5 August 2010)

AJC-8957