NOTE

Synthesis and Crystal Structure of a New Complex: [phen₂Co]₂·Mn(SCN)₆·4H₂O

JIAN-HONG BI*, BAI-ZHONG LI†, ZI-XIAN HUANG‡ and JIAN LI*

Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, P.R. China

E-mail: bi010101@126.com

A novel cobalt(II) complex [phen₂Co]₂·Mn(SCN)₆·4H₂O, where phen is 1,10-phenanthroline, was synthesized and characterized by IR spectra, elemental analysis and single-crystal X-ray. The crystal is monoclinic, space group P2(1)/n with unit cell parameters: a = 10.261(2) Å, b = 19.549(4) Å, c = 19.088(4) Å, α = 90°, β = 95.743(3)°, γ = 90°, V = 3809.7(13) ų, Z = 2, Mr = 761.06, Dc = 1.460Mg/cm³, μ = 0.821 mm¹, F(000) = 1714, T = 293(2) K, R = 0.0676, wR = 0.2057 for 29078 reflections with I > 2 σ (I). The crystal structure analysis shows that the cobalt(II) is a six-coordinated in a slightly distorted octahedron environment.

Key Words: Crystal structure, 1,10-Phenanthroline, Cobalt(II) complex, π - π Interactions.

The transition metal complexes of phenanthroline and its derivatives have become an attractive research field ^{1,2}. These complexes has been widely used in molecular catalysis, self-assembly, antitumor drugs, and material chemistry field ³⁻⁶. Here we will present a new phenanthroline complex [phen₂Co]₂· Mn(SCN)₆·4H₂O and describe its synthesis and crystal structure.

IR spectrum was recorded on an Nexus-870 spectromer. Elemental analyses on an Elementar Vario EL-III elemental analyzer.

Synthesis: An aqueous solution (50 mL) of MnSO₄ (1mmol) and KSCN (6 mmol) were mixed within 24 h, then diffused slowly into a mixed solution (50 mL) of CoSO₄ (2 mmol, 20 mL water) and 1,10-phenanthroline (6 mmol, 30 mL alcohol) in a cone bottle under normal atmospheric temperature and normal pressure for 2 weeks. The product was deep red rectangle-shaped crystals. IR spectrum (KBr, cm⁻¹): 3438, 2093, 2050, 1584, 1460, 846, 724. Elemental analysis (%) calcd. for $C_{78}H_{56}Co_2MnN_{18}O_4S_6$: C, 55.95; H, 3.37; N, 15.06. Found: (%) C, 55.73; H, 3.46; N, 15.18.

[†]School of Chemistry and Chemical Engineering, Anhui University, Hefei-230039, P.R. China. ‡Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P.R. China.

7444 Bi et al. Asian J. Chem.

Crystal structure determination: A deep red crystal (0.50 mm × 0.40 mm × 0.30 mm) was selected for crystallographic data collection at 293(2)K and structure determinated with graphite-monochromatic MoK $_{\alpha}$ radiation (λ = 0.71073 Å). A total of 29078 reflections were collected in the range of 2.34°≤0≤27.48°, of which 8728 reflections were unique with Rint = 0.0267 and R = 0.0676, wR = 0.2057; where w = 1/[$\sigma^2(F_0^2)$ + (0.1182P)² + 4.2976P] and P= (F_0^2 + 2 F_c^2)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 1.176 and -0.879e/Å³ (CCDC No.719397), respectively.

The atomic coordinates and thermal parameters are listed in Table-1 and the selected bond lengths and bond angles in Table-2, respectively. Fig. 1 shows the molecular structure of the title compound. Fig. 2 shows the packing diagram of the title compound. From the Fig. 1, the cobalt(II) ion is coordinated with six nitrogen atoms and six Co-N bonds are varied. So it is obviously that cobalt(II) ion is in a slightly distorted octahedral geometry. Fig. 2 depicts the packing diagram in the unit cell, shows that the moleculars are linked to the neighbours by electrostatic interactions between [phen₂Co]²⁺ and [Mn(SCN)₆]⁴⁻ and the π - π stacking interactions. The title compound pack in a three-dimensional frameworks.

TABLE-1 ATOMIC COORDINATES (\times 10⁴) AND THERMAL PARAMETERS (\times 10³ Å²)

Atom	X	у	Z	U(eq)
Mn	5000	0	0	45(1)
Co	1962(1)	2508(1)	1823(1)	36(1)
N(1)	3351(4)	34(2)	692(2)	57(1)
N(12)	634(3)	3178(2)	1476(2)	42(1)
C(1)	2773(4)	-55(2)	1174(2)	48(1)
C(11)	4446(4)	3299(2)	1906(2)	56(1)
S(1)	1961(1)	-173(1)	1855(1)	71(1)
H(11A)	4879	2921	2112	67

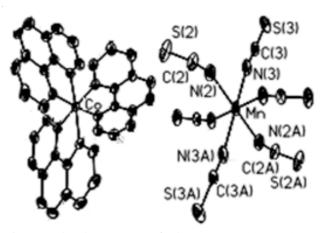


Fig. 1. Molecular structure of [phen₂Co]₂·Mn(SCN)₆·4H₂O

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)

Bond	Length	Angle	(°)	Angle	(°)
Co-N(11)	1.958(2)	N(11)-Co-N(12)	71.0(5)	N(1)-Mn-N(2)	93.23(15)
Mn-N(1)	2.248(4)	N(21)-Co-N(12)	88.12(13)	N(3)-Mn- $N(1)$	88.93(14)
N(1)-C(1)	1.157(5)	N(31)-Co-N(11)	95.05(13)	C(11)-N(11)-Co	129.2(3)
S(1)-C(1)	1.630(4)	N(32)-Co-N(12)	95.16(13))	N(1)-C(1)-S(1)	179.4(4)
N(11)-C(11)	1.325(5)	N(21)-Co-N(11)	93.86(13)	C(1)-N(1)-Mn	159.8(4)

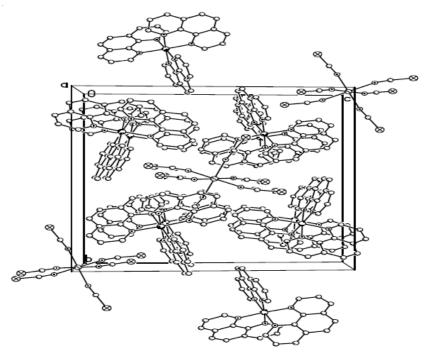


Fig. 2. Packing diagram of [phen₂Co]₂·Mn(SCN)₆·4H₂O

ACKNOWLEDGEMENT

This work is financially supported by the National Natural Science Foundation of China (No. 20871039).

REFERENCES

- 1. B.H. Ye, M.L. Tong and X.M. Chen, Coord. Chem. Rev., 249, 545 (2005).

- J.H. Bi, W.T. Bi, Z.X. Huang and N.L. Hu, *Asian J. Chem.*, 21, 6622 (2009).
 B. Moulton and M.J. Zaworotko, *Chem. Rev.*, 101, 1629 (2001).
 J.H. Bi, H.L. Wang, Z.X. Huang, N.L. Hu and L.T. Kong, *Asian J. Chem.*, 20, 3673 (2008).
 M.J. Hannon and L.J. Childs, *Supramol. Chem.*, 16, 7 (2004).
- 6. J.-H. Bi, L.T.Kong, Z.X.Huang, J.H.Liu, *Inorg. Chem.*, **47**, 4564 (2008).

(Received: 16 March 2010;

Accepted: 2 July 2010)

AJC-8857