Asian Journal of Chemistry

Vol. 22, No. 9 (2010), 7441-7442

NOTE

Antiyeast Activity of Ethanolic Extract of Bjekandera adusta

BASARAN DULGER*, NURCIHAN HACIOGLU and ILGAZ AKATA Department of Biology, Faculty of Science & Arts, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey E-mail: basarandulger@yahoo.com

Ethanolic extract of *Bjekandera adusta* (Willd.) P. Karst. was investigated for its antiyeast activity against *Hanseniaspora guilliermondii*, *Rhodotorula rubra*, *Kluyveromyces fragilis*, *Kluyveromyces marxianus*, *Debaryomyces hansenii*, *Candida albicans*, *Candida glabrata*, *Candida utilis* and *Cryptococcus neoformans* by disc diffusion method. The extracts had strong effects against *Candida albicans* and *Cryptococcus neoformans*, but weak activity was seen against the other yeast cultures used in present study.

Key Words: Antiyeast activity, Bjekandera adusta.

Mushrooms are rich sources of natural antibiotics. In mushrooms, the cell wall glucans are well-known for their immunomodulatory properties and many of the externalized secondary metabolites combat bacteria and viruses¹. In the present study, antiyeast activity of *Bjekandera adusta* (Willd.) P. Karst. (Polyporales) were tested against some yeast cultures.

The macrofungus was dried in an oven at 40 °C (12 h) and powdered. The macrofungus exracts were obtained by extracting dried powdered parts (50 g) with 95 % ethanol (200 mL) for 48 h². The extracts were then filtered through a Buchner funnel and the solvent was removed under reduced pressure at 60-65 °C on a rotary evaporator. The extract was removed and dried completely at 37 °C, kept at 4 °C in a dessicator and tested for antiyeast activity within 10 d after preparation. Antiyeast activity tests were performed using the NCCLS standard procedure^{3,4} against the following microorganisms: *Hanseniaspora guilliermondii, Rhodotorula rubra, Kluyveromyces fragilis, Kluyveromyces marxianus, Debaryomyces hansenii, Candida albicans, Candida glabrata, Candida utilis* and *Cryptococcus neoformans*.

Antiyeast activity was determined based on the inhibitory zones around the colonies (Table-1). The ethanolic extract of *B. adusta* showed antiyeast effect against all tested the yeast cultures with inhibition zone ranged from 11.2-15.8 mm. The extract showed better antiyeast activity against *Candida albicans* (15.8 mm), followed by *Cryptococcus neoformans* (15.4 mm). A moderate activity was seen against *Candida glabrata* (13.8 mm). The extract has weak activity against the other yeast

[†]Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey.

7442 Dulger et al.

Asian J. Chem.

cultures (< 13.0 mm). These values are far below than the standard antifungal antibiotic clotrimazole.

Microorganisms —	Zone of inhibition (mm)*	
	EtOH extracts	Standard**
Hanseniaspora guilliermondii	11.4	20.2
Rhodotorula rubra	12.7	18.2
Kluyveromyces fragilis	11.8	18.6
Kluyveromyces marxianus	12.2	16.2
Debaryomyces hansenii	11.2	20.4
Candida albicans	15.8	18.8
Candida glabrata	13.8	19.2
Candida utilis	11.6	18.2
Cryptococcus neoformans	15.4	17.2

TABLE-1	
ANTIYEAST ACTIVITY OF Bjenkandera adus	ta

*Values, including diameter of the filter paper disc (6.0 mm), are means of 3 replicates. **Clotrimazole (50 IU/disc).

The results of the present study confirm the presences of antiyeast activity in *Bjekandera adusta* extracts. According to findings from the National Nosocomial Infection Surveillance System (NNIS)⁵, 61 % of reported nosocomial fungal infections were due to *Candida albicans*, followed by other *Candida* spp. and *Cryptococcus* spp. The active compound of extract which is responsible for antiyeast activity remains to be elucidated in further studies. In addition, it might provide a new drug effective against clinically relevant fungal pathogens such as *Candida* and *Cryptococcus* species.

REFERENCES

- L. Barros, R.C. Calhelha, J.A. Vaz, I.C.F.R. Ferreira, P. Baptista and L.M. Estevinho, *Eur. Food Res. Tech.*, 225, 151 (2007).
- 2. N.H. Khan, M.S.A. Nur-E Kamal and M. Rahman, Indian J. Res., 87, 395 (1988).
- NCCLS, Performance Standards for Antimicrobial Disk Susceptibility Tests, Standard, NCCLS M100-S12, Wayne: Pennsylvania (2002).
- 4. C.H. Collins, P.M. Lyne and J.M. Grange, Microbiological Methods, Butterworth Co. Ltd., London, edn. 6, p. 410 (1989).
- J.J. Walsh, J.A. Sutcliffe and N.H. Georgapapadakov, Invasive Fungal Infections: Problems and Challenges for Developing New Antifungal Compounds, Merging Targets in Antibacterial and Antifungal Chemotherapy, New York, Chapman and Hall, pp. 349-373 (1992).

(Received: 5 February 2010; Accepted: 2 July 2010) AJC-8856