Vol. 22, No. 9 (2010), 7435-7437

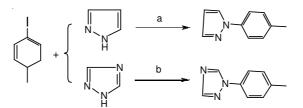
NOTE

An Effective N-Ligand for Copper-Catalyzed N-Arylation of Triazole

YAN YANG*, YONG-SHENG JIN, HONG-GANG HU, QING-JIE ZHAO, YAN ZOU and QIU-YE WU* Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China E-mail: lululion666@163.com; wuqysmmu@sohu.com

An effective N-ligand for copper-catalyzed N-arylation of 1H-1,2,4-triazole has been developed. In the presence of Cu₂O, Cs₂CO₃, N-ligand-B, 1H-1,2,4-triazole were coupled with toluene to afford the corresponding products in moderate condition and with excellent yields.

Key Words: N-Ligand, C-N Bond cross-coupling, Copper-catalyzed, 1*H*-1,2,4-Triazole.


The transition metal-catalyzed N-arylation of nitrogen-containing heterocycles (*e.g.*, pyrazoles and triazoles) reactions has received considerable attention in recent years due to their successful uses in the preparation of N-aryl compounds in pharmaceuticals, crop-protection chemicals and material sciences^{1,2}. Traditional procedures, such as the Ullmann reaction³, usually require very high temperatures and give variable yields. On the other hand, arylation of amines and anilines using aryl halides/palladium or nickel catalyst has been well documended⁴ by Hartwig and Buchwald. But attempts to extend the palladium-catalyzed cross-coupling methodology to 1*H*-1,2,4-triazole was failed⁵.

Recently, N-arylation of pyrazoles with aryl-bromides or iodides in the presence of copper catalysts and N-ligands has been investigated⁶⁻⁸, we attempt to extend the method for N-arylation of 1*H*-1,2,4-triazole and find in the presence of Cu₂O, Cs₂CO₃, N-ligand-B, 1*H*-1,2,4-triazole were coupled with 4-iodo toluene to afford the corresponding products in moderate condition and with excellent yields. This search for new suitable ligands for 1*H*-1,2,4-triazole N-arylation was first undertaken for the parallel reaction between pyrazole and 1*H*-1,2,4-triazole. Each ligands was examined (Table-1) in the presence of alternative aprotic solvents (CH₃CN, DMF). DMF was the better solvent for 1*H*-1,2,4-triazole owing to its poor solubility of cesium salt of 1,2,4-triazole (pKHA = 14.75 in DMSO) in acetonitrile, which led to incomplete conversion of 4-iodo toluene even after prolonged heating. N-Ligand-B was found more suitable than N-ligand-A due to the weaker nucleophilicity of 1,2,4-triazole compared to pyrazole. N-Ligand-B was also synthesized in our laboratory. All reaction conditions were shown in (**Scheme-I** and **II**). 7436 Yang et al.

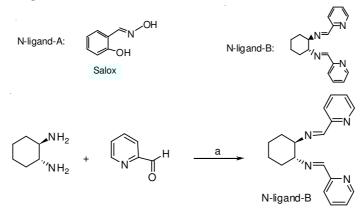

Asian J. Chem.

TABLE-1 SCREENING THE OPTIMUM CONDITION

Entry	SM	L	Solvent	Yield (%)
1	Pyrazole	N-Ligand-A	CH ₂ CN	80
2	[1,2,4]-Triazole	N-Ligand-A	CH ₃ CN	10
3	[1,2,4]-Triazole	N-Ligand-A	DMF	40
4	[1,2,4]-Triazole	N-Ligand-B	CH ₃ CN	30
5	[1,2,4]-Triazole	N-Ligand-B	DMF	80

Scheme-I: (a) Cu₂O, N-ligand-A, Cs₂CO₃, CH₃CN, 100 °C, 22 h, 80 %, (b) Cu₂O, N-ligand-B, Cs₂CO₃, DMF, 100 °C, 22 h, 80 %

Scheme-II: (a) EtOH, room temperature, 20h, then refluxed 2.5 h

The ¹H NMR spectrum were obtained on a Varian INOVA-400 instrument (400 MHz working frequency for H). The HPLC-MS were recorded on Agilent 1100 Series LC/MSD 2.1.

Preparation of 1-*p*-tolyl-1*H*-pyrazole (1): The reaction mixture of 4-iodo toluene (1 g, 4.59 mmol), pyrazole (0.47 g, 6.88 mmol), cesium carbonate (3.74 g, 11.47 mmol), copper(I) oxide (33 mg, 0.23 mmol) and N-ligand-A Salox (126 mg, 5% mmol) in dry acetonitrile (15 mL) was stirred at 100 °C under nitrogen for 22 h. The reaction mixture was cooled to room temperature, diluted with dichloromethane and filtered. The filtrate was concentrated in vacuum to yield a residue that was dissolved in dichloromethane. The residue was purified by silica gel (mobile phase: PE/EA = 10/1) to give pure compound 1-*p*-tolyl-1*H*-pyrazole. Yield (%): 610 mg (80). LC-MS: $15(M + H)^+$. ¹H NMR (CDCl₃, 300 MHz): δ 7.93-7.92 (dd, 1H), 7.74 (dd, 1H), 7.66-7.63 (d, 2H), 7.49-7.46 (d, 2H), 6.48 (m, 1H), 2.42 (s, 3H) ppm.

Preparation of 1-*p***-tolyl-1***H***-1,2,4-triazole: The reaction mixture of 4-iodo toluene (5 g, 23.0 mmol), 1***H***-1,2,4-triazole (1 g, 15.3 mmol), cesium carbonate (10 g, 30.6 mmol), copper(I) oxide (220 mg, 0.76 mmol) and N-ligand-B (900 mg, 3.1 mmol) in dry DMF was stirred at 100 °C under nitrogen for 24 h. The reaction mixture was cooled to room temperature. The residue was purified by silica gel (mobile phase: PE/EA = 10/1) to give pure compound 1-***p***-tolyl-1***H***-1,2,4-triazole after removing solvent. Yield (%): 1.91 g (55.5). LC-MS: 159.1 (M + H)⁺. ¹H NMR (CDCl₃, 300 MHz): \delta 9.43 (s, 1H), 8.15 (s, 1H), 8.10-7.98 (m, 4H), 2.42 (s, 3H) ppm.**

Preparation of N-ligand-B: Anhydrous magnesium sulphate (4.15 g, 35.0 mmol) and rac-*trans*-1,2-diaminocyclohexane (1.4 mL, 11.67 mmol) successively added to a solution of 2-pyridylaldehyde (2.22 mL, 23.3 mmol) in absolute EtOH (20 mL). The mixture was stirred for 20 h at room temperature, heated at reflux for 2.5 h and filtered. The solid was discarded and the filtrate was concentrated in vacuum. The residue was recrystallized in EtOH to give desired compound ligand-B. ¹H NMR (CDCl₃, 300 MHz): δ 8.3 (dd, 2H), 7.87 (m, 2H), 7.63 (m, 2H), 7.22 (t, 2H), 3.50 (m, 2H), 1.83 (m, 6H), 1.4 (m, 2H).

In conclusion, an efficient synthetic method of 1H-1,2,4-triazole has been developed. An effective N-ligand for copper-catalyzed N-arylation of 1H-1,2,4-triazole has been developed. The advantages of this approach are high yield and easy expriments. Further application of this method for substituted 1H-1,2,4-triazole with halogenated aryl or heteroaryl is underway in our laboratory.

ACKNOWLEDGEMENTS

This study was supported by the National Natural Science Foundation of China (20502034) and Shanghai Leading Academic Discipline Project (No. B906).

REFERENCES

- 1. J.X. Qiao, X. Cheng, D.P. Modi, K.A. Rossi, J.M. Luettgen, R.M. Knabb, P.K. Jadhav and R.R. Wexler, *Bioorg. Med. Chem. Lett.*, **15**, 29 (2005).
- 2. G.R. Jadhav, M.U. Shaikh, R.P. Kale, M.R. Shiradkar, C.H. Gill, *Eur. J. Med. Chem.*, 44, 2930 (2009).
- 3. M.A. Khan and J.B. Polya, J. Chem. Soc. C, 85 (1970).
- (a) J.F. Hartwig, *Synlett*, 329 (1997); (b) A.S. Guram, R.A. Rennels and S.L. Buchwald, *Angew. Chem. Int. Ed.*, 34, 1348 (1995); (c) J.P. Wolfe and S.L. Buchwald, *J. Org. Chem.*, 62, 6066 (1997).
- 5. B. Sezen and D. Sames, J. Am. Chem. Soc., 125, 5274 (2003).
- 6. H.J. Cristau, P.P. Cellier, J.-F. Spindler and M. Taillefer, Eur. J. Org. Chem., 695 (2004).
- 7. R.J. Song, C.L. Deng, Y.-X. Xie and J.-H. Li, *Tetrahedron Lett.*, 48, 7845 (2007).
- 8. P.Y.S. Lam, C.G. Clark, S, Saubern, J, Adams, M,P. Winters, D,M.T. Chan and A. Combs, *Tetrahedron Lett.*, **39**, 2941 (1998).

(Received: 3 February 2010; Accepted: 2 July 2010) AJC-8854