Asian Journal of Chemistry

Vol. 22, No. 9 (2010), 7405-7409

Essential Oils of the Aerial Parts of *Hypericum apricum* Kar. and Kir. and *Hypericum davisii* Robson (Guttiferae) Species from Turkey

EYUP BAGCI* and EBRU YUCE

Department of Biology, Plant Products and Biotechnology Research Laboratory, Faculty of Art & Science, Firat University, Elazig, Turkey Tel: (90)(424)2370000-3806; E-mail: ebagci@firat.edu.tr

In this study, essential oil composition of *Hypericum apricum* Kar. and Kir. and *H. davisii* Robson species grown in Turkey were determined by using GC and GC-MS system. The essential oils obtained by hydrodistillation from the aerial parts of plants. Forty-two compounds were identified in the essential oils of *H. apricum*; α -pinene (22.2 %), caryophyllene oxide (8.0 %), nonacosane (6.3 %), β -myrcene (5.9 %) and nonane (5.9 %) (as the major). Thirty compounds were identified in the essential oils of *H. davisii*; nonacosane (23.8 %), α -pinene (17.8 %), caryophyllene oxide (9.5 %) and β -caryophyllene (4.4 %) (as the major). Distribution of the major compounds in essential oil were discussed among the *Hypricum genus* patterns.

Key Words: *Hypericum*, Guttiferae, GC-MS, Essential oil, α-Pinene.

INTRODUCTION

The genus *Hypericum* L. belongs to the Hypericaceae (Guttiferae-Cluciaceae) family and encompasses approximately 460 species accommodated in 36 sections¹. In Turkey, the genus is represented by 89 species of which 43 are endemic^{2,3}. *Hypericum apricum* and *H. davisii* belongs to Section *Drosanthe* Robson, which includes 23 taxa, distributed mostly in the Centre Anatolia of Turkey².

The *Hypericum* species known as "Saint- Johns. Wort." or "centaury" in Turkish are used for their wound healing, antigastritis and antiseptic effects⁴. *Hypericum* species have been reported to contain many bioactive compounds namely naphthodianthrones, phloroglucinols, flavonoids, phenylpropanes, essential oils, amino acids, xanthones, tannins, procyanidins and other water soluble components that possess a wide array of biological properties⁵⁻⁷.

H. apricum. and *H. davisii* are two *Hypericum* species whose oils have been subjected to analysis for present studies. Herein, we reported the chemical composition of these two species, which have not been cited to any previous phytochemical analysis.

EXPERIMENTAL

Hypericum apricum and *Hypericum* davisii specimens were collected in Sivas, in 2008 Yüce-1096 and 1092. Voucher specimens are kept at the Firat University Herbarium (FUH).

7406 Bagci et al.

Asian J. Chem.

Isolation of the essential oils: Air-dried aerial parts of the plant materials (100 g) were subjected to hydrodistillation using a Clevenger-type apparatus for 3 h to yield, explained in different studies.

Gas chromatographic (GC) analysis: The essential oil was analyzed using HP 6890 GC equipped with and FID detector and an HP-5 MS column (30 m \times 0.25 mm i.d., film tickness 0.25 µm) capillary column was used. The column and analysis conditions were the same as in GC-MS. The percentage composition of the essential oils was computed from GC-FID peak areas without correction factors.

Gas chromatography/mass spectrometry (GC-Ms) analysis: The oils were analyzed by GC-MS, using a Hewlett Packard system. HP-Agilent 5973 N GC-MS system with 6890 GC in Plant Products and Biotechnology Res. Lab. (BUBAL) in Firat University. HP-5 MS column (30 m \times 0.25 mm i.d., film tickness 0.25 µm) was used with helium as the carrier gas. Injector temperature was 250 °C, split flow was 1 mL/min. The GC oven temperature was kept at 70 °C for 2 min and programmed to 150 °C at a rate of 10 °C/min and then kept constant at 150 °C for 15 min to 240 °C at a rate of 5 °C/min. Alkanes were used as reference points in the calculation of relative retention indices (RRI). MS were taken at 70 eV and a mass range of 35-425. Component identification was carried out using spectrometric electronic libraries (Wiley, NIST). The identified constituents of the essential oils are listed in Table-1.

CONSTITUENTS OF THE ESSENTIAL OILS FROM H. apricum AND H. davisii					
Compounds	RRI	H. apricum	H. davisii		
Nonane	996	5.9	2.1		
α-Pinene	1021	22.2	17.8		
β-Pinene	1055	2.6	3.1		
β-Myrcene	1064	5.9	3.4		
Decane	1072	0.5	_		
<i>p</i> -Cymene	1091	0.7	0.7		
Limonene	1095	0.8	0.6		
cis-Ocimene	1100	-	1.7		
δ-3-Carene	1108	-	3.8		
Undecane	1148	-	1.7		
trans-Pinocarvone	1178	-	0.5		
Camphor	1182	-	1.3		
Pinocarvone	1192	0.1	-		
α-Terpineol	1215	0.9	1.8		
Chrysanthenone	1223	_	0.6		
Cyclohexasiloxane	1296	0.2	_		
α-Cubebene	1337	0.9	_		
α-Longipinene	1340	1.2	_		
α-Ylangene	1355	0.2	_		

TABLE-1

β-Bourbonene13660.2-β-Caryophyllene13933.84.4β-Cubebene14000.2-β-Farnesene14162.41.6α-Humulene14180.9-Octadecane14210.2-Cycloheptasiloxane14251.12.3α-Amorphen14301.10.6Germacrene D14360.81.0δ-cadinene14422.6-Bicyclogermacrene1445-0.9δ-Cadinene1456-0.9δ-Cadinene1458-1.1Epibcyclosesquiphllendrene14602.1-Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6α-Cadinol15391.81.7Dehydroaromadendrene15580.2-Cyclosativene1514-1.3Benzoic acid15920.2-Cyclotetradecanol16310.2-Cyclotetradecanol16310.2-Cyclotetradecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8	α-Copaene	1360	1.5	0.8
β-Caryophyllene13933.84.4β-Cubebene14000.2-β-Farnesene14162.41.6α-Humulene14180.9-Octadecane14210.2-Cycloheptasiloxane14251.12.3α-Amorphen14301.10.6Germacrene D14360.81.0δ-cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9δ-Cadinene1445-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Penzidecanol16310.2-Cyclotetradecane16500.2-Nonadecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decancic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8	-	1366	0.2	_
β-Cubebene14000.2-β-Farnesene14162.41.6α-Humulene14180.9-Octadecane14210.2-Cycloheptasiloxane14251.12.3α-Amorphen14301.10.6Germacrene D14360.81.0δ-cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9δ-Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15920.2-Tetradecanoic acid15920.2-Tetradecanoic acid15920.2-Nonadecane16600.9-Cyclotetradecane16500.2-Nonadecane16600.9-Cyclotetradecane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclotenasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8	-	1393	3.8	4.4
β-Farnesene14162.41.6β-Farnesene14180.9-Octadecane14210.2-Cycloheptasiloxane14251.12.3α-Amorphen14301.10.6Germacrene D14360.81.0δ-cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9δ-Cadinene1458-1.1Epibcyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6α-Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzoic acid15920.2-Cyclostalvene16310.2-Cyclotetradecane16600.9-Cyclotetradecane16600.9-Cyclotecasiloxane16721.21.8n-Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8				_
α -Humulene14180.9- α -Humulene14180.2- α -Cycloheptasiloxane14251.12.3 α -Amorphen14301.10.6Germacrene D14360.81.0 δ -cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9 δ -Cadinene1458-1.1Epibcyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Dehydroaromadendrene16500.2-Cyclotetradecane16600.9-Cyclotetradecane16600.9-Cyclotecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8				1.6
Animatic1421 0.2 $-$ Cycloheptasiloxane14251.12.3 α -Amorphen14301.10.6Germacrene D14360.81.0 δ -cadinene14422.6 $-$ Bicyclogermacrene1445 $-$ 0.4Naphtalene1456 $-$ 0.9 δ -Cadinene1458 $-$ 1.1Epibicyclosesquiphllendrene14602.1 $-$ Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5 $-$ Cyclosativene1514 $-$ 1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2 $-$ Cyclotetradecanoic acid15920.2 $-$ Nonadecane16600.9 $-$ Cyclotetradecane16600.9 $-$ Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0 $-$ Heneicosane17890.4 $-$ Cyclononasiloxane18530.60.5Tricosane19030.3 $-$ Nonacosane19426.323.8		1418		_
Cycloheptasiloxane14251.12.3 α -Amorphen14301.10.6Germacrene D14360.81.0 δ -cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9 δ -Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Qxlotetradecane16500.2-Cyclotetradecane16500.2-Nonadecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8				_
α -Amorphen14301.10.6Germacrene D14360.81.0 δ -cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9 δ -Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Quelotetradecane16500.2-Nonadecane16600.9-Cyclotetradecane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8				2.3
Anterprese14360.81.0 δ -cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9 δ -Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Pentadecanol16310.2-Cyclotetradecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8				
δ-cadinene14422.6-Bicyclogermacrene1445-0.4Naphtalene1456-0.9δ-Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6α-Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzoite acid15960.7-2-Pentadecanol16310.2-Cyclotetradecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8		1436	0.8	
Bicyclogermacrene1445– 0.4 Naphtalene1456– 0.9 δ -Cadinene1458– 1.1 Epibicyclosesquiphllendrene1460 2.1 –Spathulenol1495 1.6 2.9 Caryophyllene oxide1498 8.0 9.5 Silane1505 0.5 –Cyclosativene1514– 1.3 Benzoic acid1523 1.8 2.6 α -Cadinol1539 1.8 1.7 Dehydroaromadendrene1558 0.2 –Tetradecanoic acid1592 0.2 –Renzilbenzoate1596 0.7 –2-Pentadecanol1631 0.2 –Cyclodetradecane1660 0.9 –Cyclodecasiloxane1672 1.2 1.8 <i>n</i> -Decanoic acid1692 1.0 –Heneicosane1789 0.4 –Cyclononasiloxane1853 0.6 0.5 Tricosane1903 0.3 –Nonacosane1942 6.3 23.8				_
Naphtalene1456- 0.9 δ -Cadinene1458- 1.1 Epibicyclosesquiphllendrene1460 2.1 -Spathulenol1495 1.6 2.9 Caryophyllene oxide1498 8.0 9.5 Silane1505 0.5 -Cyclosativene1514- 1.3 Benzoic acid1523 1.8 2.6 α -Cadinol1539 1.8 1.7 Dehydroaromadendrene1558 0.2 -Tetradecanoic acid1592 0.2 -Benzilbenzoate1596 0.7 -2-Pentadecanol1631 0.2 -Cyclodecasiloxane1660 0.9 -Cyclodecasiloxane1672 1.2 1.8 <i>n</i> -Decanoic acid1692 1.0 -Heneicosane1789 0.4 -Cyclononasiloxane1853 0.6 0.5 Tricosane1903 0.3 -Nonacosane1942 6.3 23.8			_	0.4
δ-Cadinene1458-1.1Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6α-Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzilbenzoate15960.7-2-Pentadecanol16310.2-Nonadecane16600.9-Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8			_	
Epibicyclosesquiphllendrene14602.1-Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5-Cyclosativene1514-1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzilbenzoate15960.7-2-Pentadecanol16310.2-Cyclotetradecane16600.9-Nonadecane16721.21.8 <i>n</i> -Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8	-		_	
Spathulenol14951.62.9Caryophyllene oxide14988.09.5Silane15050.5 $-$ Cyclosativene1514 $-$ 1.3Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2 $-$ Tetradecanoic acid15920.2 $-$ Benzilbenzoate15960.7 $-$ 2-Pentadecanol16310.2 $-$ Cyclotetradecane16600.9 $-$ Cyclodecasiloxane16721.21.8 <i>n</i> -Decanoic acid16921.0 $-$ Heneicosane17890.4 $-$ Cyclononasiloxane18530.60.5Tricosane19030.3 $-$ Nonacosane19426.323.8			2.1	_
Caryophyllene oxide14988.09.5Silane1505 0.5 $-$ Cyclosativene1514 $ 1.3$ Benzoic acid1523 1.8 2.6 α -Cadinol1539 1.8 1.7 Dehydroaromadendrene1558 0.2 $-$ Tetradecanoic acid1592 0.2 $-$ Benzilbenzoate1596 0.7 $-$ 2-Pentadecanol1631 0.2 $-$ Cyclotetradecane1660 0.9 $-$ Cyclodecasiloxane1672 1.2 1.8 <i>n</i> -Decanoic acid1692 1.0 $-$ Heneicosane1789 0.4 $-$ Cyclononasiloxane1853 0.6 0.5 Tricosane1903 0.3 $-$ Nonacosane1942 6.3 23.8			1.6	2.9
Silare1505 0.5 $-$ Cyclosativene1514 $ 1.3$ Benzoic acid1523 1.8 2.6 α -Cadinol1539 1.8 1.7 Dehydroaromadendrene1558 0.2 $-$ Tetradecanoic acid1592 0.2 $-$ Benzilbenzoate1596 0.7 $-$ 2-Pentadecanol1631 0.2 $-$ Cyclotetradecane1650 0.2 $-$ Nonadecane1660 0.9 $-$ Cyclodecasiloxane1672 1.2 1.8 <i>n</i> -Decanoic acid1692 1.0 $-$ Heneicosane1789 0.4 $-$ Cyclononasiloxane1853 0.6 0.5 Tricosane1903 0.3 $-$ Nonacosane1942 6.3 23.8	-		8.0	
Benzoic acid15231.82.6 α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzilbenzoate15960.7-2-Pentadecanol16310.2-Cyclotetradecane16500.2-Nonadecane16600.9-Cyclodecasiloxane16721.21.8n-Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8		1505	0.5	_
α -Cadinol15391.81.7Dehydroaromadendrene15580.2-Tetradecanoic acid15920.2-Benzilbenzoate15960.7-2-Pentadecanol16310.2-Cyclotetradecane16500.2-Nonadecane16600.9-Cyclodecasiloxane16721.21.8n-Decanoic acid16921.0-Heneicosane17890.4-Cyclononasiloxane18530.60.5Tricosane19030.3-Nonacosane19426.323.8	Cyclosativene	1514	_	1.3
Dehydroaromadendrene 1558 0.2 – Tetradecanoic acid 1592 0.2 – Benzilbenzoate 1596 0.7 – 2-Pentadecanol 1631 0.2 – Cyclotetradecane 1650 0.2 – Nonadecane 1660 0.9 – Cyclodecasiloxane 1672 1.2 1.8 n-Decanoic acid 1692 1.0 – Heneicosane 1789 0.4 – Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 – Nonacosane 1942 6.3 23.8	Benzoic acid	1523	1.8	2.6
Tetradecanoic acid 1592 0.2 – Benzilbenzoate 1596 0.7 – 2-Pentadecanol 1631 0.2 – Cyclotetradecane 1650 0.2 – Nonadecane 1660 0.9 – Cyclodecasiloxane 1672 1.2 1.8 <i>n</i> -Decanoic acid 1692 1.0 – Heneicosane 1789 0.4 – Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 – Nonacosane 1942 6.3 23.8	α-Cadinol	1539	1.8	1.7
Benzilbenzoate 1596 0.7 - 2-Pentadecanol 1631 0.2 - Cyclotetradecane 1650 0.2 - Nonadecane 1660 0.9 - Cyclodecasiloxane 1672 1.2 1.8 <i>n</i> -Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8	Dehydroaromadendrene	1558	0.2	_
2-Pentadecanol 1631 0.2 - Cyclotetradecane 1650 0.2 - Nonadecane 1660 0.9 - Cyclodecasiloxane 1672 1.2 1.8 <i>n</i> -Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8	Tetradecanoic acid	1592	0.2	_
Cyclotetradecane 1650 0.2 - Nonadecane 1660 0.9 - Cyclodecasiloxane 1672 1.2 1.8 n-Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8	Benzilbenzoate	1596	0.7	-
Nonadecane 1660 0.9 - Cyclodecasiloxane 1672 1.2 1.8 n-Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8	2-Pentadecanol	1631	0.2	-
Cyclodecasiloxane 1672 1.2 1.8 n-Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8				-
n-Decanoic acid 1692 1.0 - Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8		1660		_
Heneicosane 1789 0.4 - Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8				1.8
Cyclononasiloxane 1853 0.6 0.5 Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8				-
Tricosane 1903 0.3 - Nonacosane 1942 6.3 23.8				-
Nonacosane 1942 6.3 23.8	-			0.5
				_
	Nonacosane Total	1942	<u>6.3</u> 84.9	23.8 86.8

RESULTS AND DISCUSSION

The hydrodistillation of the aerial parts of *H. apricum* and *H. davisii* yielded 0.15 % (w/w) of pale yellowish oils. The yields are nearly similar to that observed in other *Hypericum* species under investigation in our laboratory, like *H. scabrum*, *H. scabroides*⁸, *H. thymbrifolium* and *H. pseudolaeve*⁹, *H. salsolifolium* and *H. retusum*¹⁰, *H. capitatum* varieties¹¹, *H. sorgerae*¹² and *H. thymopsis*¹³.

The identified oil components from *H. apricum*, *H. davisii*, representing 84.9 and 86.8 % of the total oils, are listed in Table-1. Table includes their relative retention indices and the percentage composition. The isolated essential oils were complex

7408 Bagci et al.

mixture of non-terpenes, monoterpenes and sesquiterpenes; 52 components were identified from which 20 are common to both oils (Table-1).

Forty two compounds were identified in the essential oils of *H. apricum*; α - pinene (22.2 %), caryophyllene oxide (8.0 %), nonacosane (6.3 %), β -myrcene (5.9%) and nonane (5.9%) (as the major). Thirty compounds were identified in the essential oils of *H. davisii*; nonacosane (23.8 %), α-pinene (17.8 %), caryophyllene oxide (9.5 %) and β -caryophyllene (4.4 %) (as the major).

The first major compound of *H. apricum* and the second major compound *H.* davisii is α -pinene, which is the dominant constituent of H. scabrum L.⁸, H. salsolifolium Hand.-Mazz. and H. retusum Aucher.¹⁰, H. capitatum var. capitatum¹¹, H. thymbrifolium Boiss. and Noë⁹, H. perfoliatum¹⁴⁻¹⁶, H. tomentosum, H. humifusum, *H. linarifolium*¹⁷ and *H. pulchrum*¹⁶ essential oils.

The first major compound of *H. davisii* is nonacosane, which is reported as to be the fourth major compound in H. apricum. Nonacosane was also among the major constituents of H. barbatum, H. maculatum, H. richeri, H. rumeliacum and *H.* $tetrapterum^{18}$.

Caryophyllene oxide is the second major compound in *H. apricum* (8.0%) and the third *H. davisii* (9.5 %), respectively. Regarding the qualitative pattern of the essential oils of Hypericum species, there are similar results for caryophyllene oxide, major/high component reported for Southeastern Serbia and Greece specimens of H. barbatum, H. maculatum, H. richeri, H. rumeliacum and H. tetrapterum¹⁸, for *H. perforatum* and *H. tetrapterum*¹⁹.

The major components δ -3 carene, camphor, *cis*-ocimene, cyclosativene and δ -cadinene, determined in the essential oils of *H. davisii* were not determined in the essential oils of *H. apricum*.

This study demonstrates the occurance of α -pinene/caryophyllene oxide chemotype of *H. apricum* and nonacosane/ α -pinene chemotype of *H. davisii* in Central Anatolian region of Turkey.

REFERENCES

- 1. N.K.B. Robson, System. Biodiver., 4, 19 (2006).
- 2. P.H. Davis, R.R. Mill and K. Tan, Flora of Turkey and The East Aegean Island, Vol. 10, Edinburgh University Press (1988).
- 3. A. Güner, N. Özhatay, T. Ekim and K.H.C. Baser, Flora of Turkey and the East Aegean Islands, Vol. 11, Edinburgh University Press, (2000).
- 4. T. Baytop, Therapy with Medicinal Plants in Turkey, Istanbul University Press, Istanbul, p. 185 (1984).
- 5. J. Greeson, B. Sanford and D.A. Monti, *Psychopharmacology*, 153, 402 (2001).
- 6. G.M. Kitanov, Biochem. Syst. Ecol., 29, 171 (2001).
- 7. N. Tanaka and Y. Takaishi, *Phytochemistry*, **67**, 2146 (2006). E. Bagci and F. Bekci, *Acta Botan. Gallica*, **157**, 2 (2010).
 E. Bagci and F. Yuce, *L Essent Oil D*, 177, 2 (2010).
- E. Bagci and E. Yuce, J. Essent. Oil Bearing Plants, 13, 5 (2010).
- 10. E. Bagci and E. Yuce, Acta Botan. Gallica, 157, 3 (2010).
- 11. E. Bagci and E. Yuce, J. Essent. Oil Bearing Plants, 13, 6 (2010).

Vol. 22, No. 9 (2010)

- 12. E. Yuce and E. Bagci, 6, Conference on Medicinal and Aromatic Plants of Southeast European Countries (6. CMAPSEEC) (2010).
- 13. E. Yuce, E. Bagci and G. Dogan, 6. Conference on Medicinal and Aromatic Plants of Southeast European Countries (6. CMAPSEEC) (2010).
- 14. M. Couladis, P. Baziou, P.V. Petrakis and C. Harvala, Flav. Fragr. J., 16, 204 (2001).
- 15. P.V. Petrakis, M. Couladis and V.A. Roussis, *Biochem. Syst. Ecol.*, 33, 873 (2005).
- 16. T. Nogueira, M.J. Marcelo-Curto, A. Cristina Figueiredo, J.G. Barroso, L.G. Pedro, P. Rubiolo and C. Bicchi, *Biochem. Syst. Ecol.*, **36**, 40 (2007).
- K. Hosni, K. Msaada, M.B. Taarit, O. Ouchikha, M. Kallel and B. Marzouk, *Ind. Crops Prod.*, 27, 308 (2008).
- A. Smelcerovic, V. Verma, M. Spiteller, M.S. Ahmad, S.C. Puri and G.N. Qazi, *Phytochemistry*, 67, 171 (2006).
- 19. M. Pavlovic, O. Tzakou, P.V. Petrakis and M. Couladis, Flav. Fragr. J., 21, 84 (2006).

(Received: 4 March 2010; Accepted: 2 July 2010) AJC-8848