Asian Journal of Chemistry

Vol. 22, No. 9 (2010), 6922-6926

Effect of Time in the Synthesis of an Intermediate of Phenothiazine Derivatives

XIAO-JUN FENG[†] and HUA-ZE DONG^{*} Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, 230061, P.R. China E-mail: dapdong@163.com

During the synthesis of a derivative from phenothiazine, two distinct competitive reactions were detected. In this paper, some proofs about these reactions were examined.

Key Words: Intermediate, Phenothiazine, Reversible-reaction.

INTRODUCTION

In pharmaceuticals industry, asymmetric phenothiazine derivatives were synthesized¹⁻⁷ for manufacturing anticonvulsants, antifungals, antibacterials. Symmetric phenothiazine derivatives were reported rarely. For this reason, a series of symmetric phenothiazine derivatives were designed for getting some novel biological activities such as 3,7-disubstituted 10-ethyl phenothiazine. An intermediate was prepared by special method because of two competitive reactions in one system. It was reported that two different reaction times led to different products.

EXPERIMENTAL

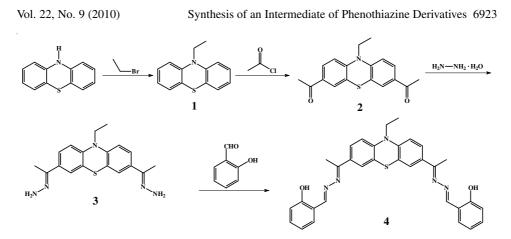
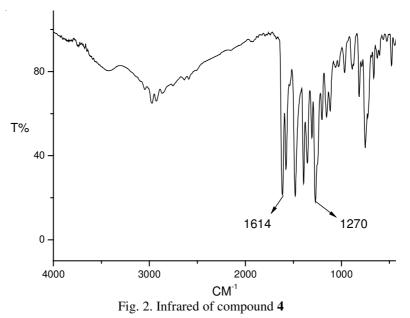
Phenothiazine was purchased from Guangzhou Weibo Chem Ltd. All other chemicals used in the experiments were of analytical grade. Elemental analysis was performed with a Perkin Elmer 240 analyzer. IR spectra from 4000-400 cm⁻¹, as KBr pellets, were recorded on a Nicolet FT IR 170 SX pectrophotometer. Proton nuclear magnetic resonance (¹H NMR) was performed on Bruker 300 spectrometer with MS as internal startdard.

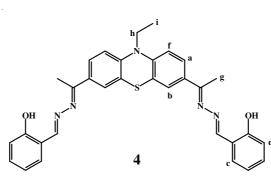
Synthesis: The synthetic route is shown in Fig. 1.

10-Ethylphenothiazine (1), 3,7-diacetyl-10-ethylphenothiazine (2) and 3,7-bis(2-hydrazonoethy1)-(0-ethylphenothiazine) (3) were synthesized by reported method⁸.

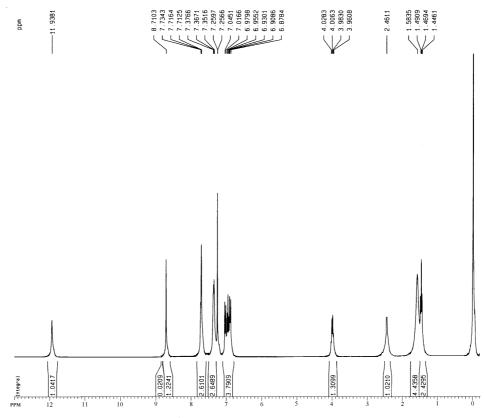
3,7-Bis(**2-salicylidenehydrazonoethyl-(10-ethyl-phenothiazine)** (**4**): **3** (0.3 g) and 0.22 mL salicylaldehyde were put in methanol (25 mL) and the solution was stirred and refluxed for 30 s to yield the orange solid. Orange precipitates were

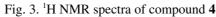
[†]Food and Drug Department of Qingyuan Polytechnic, Qingyuan 511510, P.R. China.


Fig. 1. Preparative steps of the compound 4

filtered out, washed by water and ethanol and dried in vacuum. Yield: 85 %. ¹H NMR (CDCl₃ 300 MHz): 8.70(s, 2H), 7.30(s, 2H), 6.90 (d, d, d=6.90 Hz, 6H), 7.70 (t, 4H), 1.58 (s, 6H), 4.00 (m, 2H), 1.47 (t, 3H), 11.9 (d, 2H), 2.5 (s, 2H). IR (KBr, v_{max} , cm⁻¹): 1270, 1614. MS (EI) m/z (%): 548.2 ([M + H]⁺, 100), 413.2 (10), 391.1 (8). Ana1. calcd. (%) for C₃₂H₂₉N₅O₂S: C 70.18, H 5.34, N 12.79, found. (%) C 70.23, H 5.35, N 12.21.


1,2-Di(2-hydroxyl)benzylidenehydrazine (5): 3 (0.3 g) and 0.22 mL salicylaldehyde were put in methanol (25 mL) and the solution was stirred and refluxed for 40 min to yield the pale yellow crystals. Yield: 92 %. ¹H NMR (CDCl₃ 300 MHz): 8.70 (s, 2H), 7.30 (s, 2H), 7.4 (d, 2H), 7.37 (m, 2H), 6.9 (m, 2H), 7.0 (d, 2H), 2.2 (s, 2H).



Asian J. Chem.

 $\label{eq:horizontal_states} {}^{a}H: 8.7 \ ppm(s) \ 2H, \ {}^{b}H: 7.3 \ ppm(s) \ 2H, \ {}^{c}H, \ {}^{d}H, \ {}^{f}H: 6.9 \ ppm \ (m) \ 6H, \ {}^{e}H: 7.7 \ ppm(t) \ 4H, \ {}^{g}H: 1.58 \ ppm(s) \ 6H, \ {}^{b}H: 4.0 \ ppm \ (m) \ 2H, \ {}^{i}H: 1.47 \ ppm(t) \ 3H, \ {}^{i}H: 11.9 \ ppm(t) \ 2H, \ {}^{k}H: 2.5 \ ppm(s) \ 2H$

RESULTS AND DISCUSSION

4 and 5 can be obtained in the same solvent only with different reaction time. The possible reason is showed in **Scheme-II**. In the system, a slower reaction from **3-4** and a faster reaction from **3-5** are coexisting. At the same time, a reversible

6924 Feng et al.

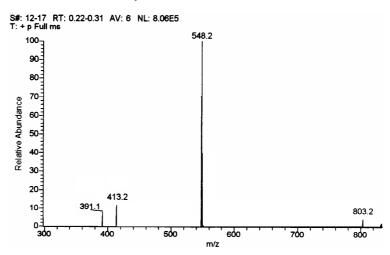
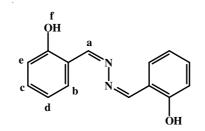



Fig. 4. MS(EI) of compound 4

^aH : ppm 8.7(s) 2H, ^bH : ppm 7.4(d) 2H, ^cH : ppm 7.37(m) 2H, ^dH : ppm 6.9(m) 2H, ^cH : ppm 7.0(d) 2H, ^fH : ppm 2.2(s) 2H

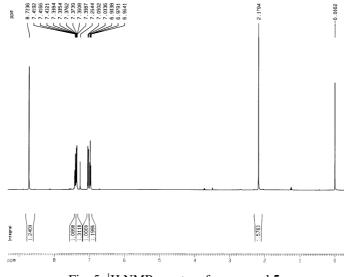
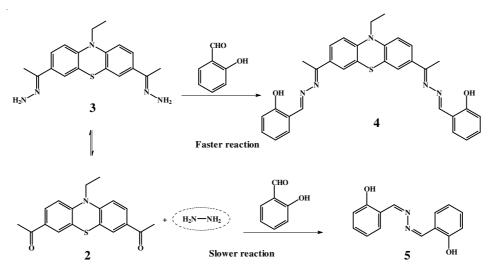



Fig. 5. ¹H NMR spectra of compound **5**

6926 Feng et al.

Asian J. Chem.

chemical reaction is between 3 and 2. When the reactants mixed, the faster reaction works. As reaction time prolongs, the compound 5 is reformed by salicylaldehyde and hydrazine hydrate which derived from the decomposition of compound 3 because of influence of the slower reaction.

Scheme-II: Possible reason for 4 into 5

ACKNOWLEDGEMENT

This project was supported by Bureau of Science and Technology, Qingyuan (Project No. 2009B057).

REFERENCES

- N. Motohashi, M. Kawase, S. Saito, T. Kurihara, K. Satoh, H. Nakashima, M. Premanathan, R. Arakaki, H. Sakagami and J. Molnar, *Int. J. Antimicrob. Agents*, 14, 203 (2000).
- 2. J. Flieger and R. Swieboda, J. Chromatogr. A, **1192**, 218 (2008).
- A. Konya, A. Andor, P. Satorhelyi, K. Nemeth and I. Kurucz, *Biochem. Biophys. Res. Commun.*, 346, 45 (2006).
- A. Bisi, M. Meli, S. Gobbi, A. Rampa, M. Tolomeo and L. Dusonchet, *Bioorg. Med. Chem.*, 16, 6474 (2008).
- 5. G.A. Silva, L.M.M. Costa, F.C.F. Brito, A.L.P. Miranda, E.J. Barreiro and C.A.M. Fraga, *Bioorg. Med. Chem.*, **12**, 3149 (2004).
- A.B. Hendrich, O. Wesolowska, N. Motohashi, J. Molnar and K. Michalak, *Biochem. Biophys. Res. Commun.*, **304**, 260 (2003).
- 7. M. Kalkanidis, N. Klonis, L. Tilley and L.W. Deady, Biochem. Pharmacol., 63, 833 (2002).
- D.-M. Li, H.-P.g Zhou, J.-Q. Pu, X.-J. Feng, J.-Y. Wu, Y.-P. Tian, X.-Q. Yu, X.-T. Tao and M.-H. Jiang, *Chin. J. Chem.*, 23, 1483 (2005).

(*Received*: 31 December 2009; Accepted: 10 June 2010) AJC-8781