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General introduction on neural networks (NN), including its origin

and chronological development are presented. The features of neural

networks in terms of architecture, transfer function, training algorithm

and the popular neural network packages are presented. Neural network

modeling and other polynomial models applied to under stand on the

effect of hydrogen ion on the oxidation of kinetic reaction of Ru(CN)6
4-

with MnO4
– in perchloric acid medium. The data set is analyzed using

the Trajan software. The obtained residual values with neural network

(NN) modeling are far less than that in the polynomial model and also

the calculated kNN values are better correlated with kobsd values.
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INTRODUCTION

Chemometrics1-4 comprises Chemistry, Advanced Mathematics, Statistics and

Information Theory. It is an interdisciplinary area emerged in late 1970's. With the

advent of chemometrics, multivariate and multi response data acquisition from sta-

tistically designed experiments, expert system inferences5 result in reliable chemical

information even in noisy environment.

Kinetometrics, a subfield of chemometrics deals with the knowledge of rates of

chemical reaction and mechanistic details. The scope of chemometrics in kinetic

investigations is already reported6-8 and a few popular subfields are envirometrics9,10,

pharmacometrics, synthometrics, qualimetrics and speciometrics11.

Neural network modeling was used for analysis of environmental samples9,10

and for preparation of ceramics12. Basing on the available reported literature, the

neural network (NN) modeling is used in kinetic investigations. Neural network

analysis has prospects in predicting the rate constant of a reaction, from a set of

k-values for related compounds. For instance, from a pool of rate constants, for the

hydrolysis of different esters (R1CO2R2), the rate constant for the hydrolysis of an

ester which is not investigated, could be accurately predicted.
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Data reduction technique: The variation of response or its function with the

magnitude of the influencing factors can be represented by a linear or non-linear

model. For instance, in a linear model, y = a0 + a1x all the data points are reproducible

by the parameters a0 and a1. This is a data reduction technique as the number of

parameters is far less than the number of data points. Variation of absorbance (Y)

with concentration (Beer's law) or log k(Y) with substituent (X) (Hammet equation)

is a well known linear model. The slopes and intercepts of these models bear chemical

significance. In the case of non-linear models and polynomial models, the number

of parameters increases with the order of the polynomial.

Neural network (NN): Introduction of hyphenated instruments which gives

output substantially large amounts of data poses new challenges for analysis, graphical

representation and interpretation. The extraction of knowledge from chemical data

involves various computational procedures using hard or soft models. Hard modeling

(linear or non-linear) techniques require knowledge of the model and noise charac-

teristics. The hurdles associated with multivariate technique are co linearity and

complexity of data including non-linearity. To surmount the difficulties of deductive

methods based on strong assumptions about continuity of parameter space and er-

ror structure, natural computations with weak assumptions were proposed in the

later part of the 20th century. Uncertainty in data, vagueness of information, missing

data points and imprecise goals add to the complexity. Thus, there is a need for a

paradigm shift from classical methods to artificial intelligence (AI) tools.

Neuro physiologists and cyberneticists introduced connectionist model to explain

vision and tactile senses. The neurons in bundles organized in a very complex manner

are instrumental for the functioning of a human brain. Mathematicians proposed

perceptron model consisting of neurons, now called processing elements13 (PE's).

That was the beginning of the era of artificial neural networks (ANN)14-20, which

gained momentum in mid 1980's. The ANN is a reality although artificial brains are

in the realm of scientific fiction because human brain is so complex that it remains

yet to be understood. With 25 years of rigorous depth- and breadth-wise investiga-

tions, the word 'artificial' can safely be dropped.

Data processing with neural networks (NNs) is performed either by direct implemen-

tation on a chip or by a software. Neural network implementations in software are

popular and have been successfully used in predicting stock market, forex, sunspots,

onset of diabetes, distinguishing renal cell carcinoma from cyst, diagnosing acute

myocardial infraction and classifying iris data.

Neural network (NN) is a data driven imbibing technology. It models multivariate,

non-linear data even with discontinuous regions. This technique does not need transfor-

mation of data unlike in classical linearization techniques. Neural networks are

broadly classified into self-organizing map (SOM) and multi layer perceptron (MLP).

Self organising map (SOM) handles only response data in an unsupervised learning

form. On the other hand, multi layer perceptron (MLP) (Chart-1) requires explana-

tory variables also and processes them in the supervised learning mode.
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Neural Network : MLP (Multi Layer Perceptron) 

 : Feed Forward 

 : Fully Connected 

Data : Explanatory variable (X) Response (Y) 

Architecture : I#-H1#-H2#-0 

Activation function : I - Linear 

  H# - [Sigmoid. . . . . ] 

  O - Linear 

Training algorithm : [BP, CG, Marquardt - - - - ] 

Output : YTr  

  Tr.err        Ve.err         Te.err 

 
Chart-1: Multi layer perceptron (MLP)

Architecture: An neutral network contains a sequence of layers. Each layer

consists of a set of processing elements (PEs). The first and the last are called input

and output layers and the processing elements in them correspond to the explanatory

and response variables. The maximum number of intermediate layers is three. Since

an end user is interested in input and output patterns and not in the intermediate

processes, the latter are called hidden layers. Transformation of input to output is in

the forward direction and this is referred to as feed forward neural network (FFNN)21.

The number of PEs in different hidden layers need not be the same. With some

exceptions, the usual number of PEs is less than 50 % of the data points. The processes

in the hidden layers are vital in understanding the complex patterns at the output layer.

Full or random connections of PEs with different layers result in different NN

models. The extent of connection between PEs in two layers is called a weight,

which is analogous to synapse strength in neurobiology. They are the parameters of

NN and are initially chosen from random numbers. They are refined until convergence

or maximum clock time set is over.

Transfer function: Transfer function (TF) is a mathematical equation associated

with the PE. The primitive transfer function is multiplication by unity i.e. doing

nothing. Typical TFs are polynomial (linear, quadratic, cubic, etc.), hyperbolic (tanh,

sigmoid), kernel (Guassian) and wavelet. Depending upon the nature of the TF,

different nets have been proposed. For example, radial basis function NN (RBFNN)22

and probabilistic neural network (PNN)23 use radial and probability density functions,

respectively.

A processing element (PE), in a given hidden layer, receives information from

PEs of the previous layer. The TF operates on the information and produces the

result, which is passed on to the next layer. Sigmoid (SG) is a popular transfer

function. Its output range is zero and +1. One of its two parameters, translation
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factor (θ) shifts the entire profile in horizontal direction and the other, scale factor

(α) changes the steepness. The α renders sigmoid (SG) profile to be a hard limiter

and a straight line. This is responsible for the ability of NN with SGTF to model

linear and non-linear profiles.

Wavelets24,25 as transfer functions (TFs) have good zooming property i.e. they

explore fine details in highly non-linear multi-response surfaces. Other transfer

functions suggested are the binary products of tanh, arctan and sigmoid.

Training: A vector in the data matrix is a pattern. Each pattern is given to the

network and the output is compared with the response. Hence, it is a supervised

learning. The error function is calculated after all the patterns are presented. The

widely employed optimization procedure (learning rule) in 1980's was back propagation

(BP), which is a variation of steepest descent algorithm. Recently Marquardt, conjugate

gradients (CG), simulated annealing algorithms (SAA), genetic algorithm (GA),

etc., have been incorporated in NN software.

Illustration: A three-layered NN (input-one hidden-output layer) is depicted

and the formulae for outputs of the neurons are given in Chart-2a-c. The response

is modeled as a linear combination of sigmoid functions. Non-linearity in I/O mapping

increases with the second and third hidden layers. The data set is divided randomly

or in a prefixed manner into training, verification and test sets.

X1 

X2 

W11 

W12 

W21 

W22 

H1(1) 

H1(2) 

WH1[1,1] 

WH1[2,1] 

X1, X2-Inputs; W11, W12, W21, W22-weights; H1 (1), H1  Chart 2a: Neural network one

hidden layer (2)-hidden neurons; WH1[1,1], WH1[2,1]-Outputs

X = [X1, X2]

IH1 = XT*W

IH1(1) = XT*W(:,1)=X1*W11+X2*W12

IH1(2) = XT*W(:,2)=X1*W12+X2*W22

OH1 = (IH1)T*WH










)1,2(1WH

)1,1(1WH

= [IH1(1) IH1(2)]*

= IH1(1)*WHI(1,1)+IH1(2)*WH1(2,1)
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= (X1*W11+X2*W12)*WH1(1,1) + (X1*W12+X2*W21)*WH1(2,1)

OH1 = SG(XT*W)

OH1(1) =
)}*)12W*2X11W*1X{(EXP1

1

θ−−+

OH1(2) =
)}*)22W*2X12W*1X{(EXP1

1

θ−−+

OH1 =
)*W*X(EXPONE

ONE
T

θ−+

Output = OH1(1)*WH1(1,1)+OH1(2)+WH1(2)

=  
θ−−+

+
−−+ *)22W*2X12W*1X(EXP1

)2,2(1WH

12W*2X11W*1X(EXP1

)1,1(1WH

 

H1# H2# H3# 

Hidden layers 

Input Output 

Chart-2b: Neural network-with three hidden layers

The best architecture is chosen by changing the number of hidden layers (1, 2

or 3), hidden neurons in each layer (1 to 50 % of the number of data points), transfer

function and learning algorithm. Experimental design has prospects in this activity.

A quick heuristic is to propose the best set of models with a minimum training error

(Tr.err), verification error (Ve.err) and test error (Te.err). Advanced residuals in

the measurement scale and influential statistics have also been handled in some

packages by an intelligent module. There are more than 80 commercial packages

with unlimited capabilities and a few typical ones are described in Chart-3.
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1 Hidden layer 

2 Hidden layer 

3 Hidden layer 

W: Scaling or pre-processing; W1H, W2H and W3H: Weights from 1 to H1, H1 to

H2 and H2 to H3; TF: Transfer function like sigmoid, hyperbolic and radial basis.

Chart-2c: Neural Network-input to out put mapping in MLP

During the past two decades this technique has been in wide use in chemistry

for quantitation, calibration, speciation, parameterization and pattern recognition

(PR). In spectroscopic techniques NN is applied in classification26 and peak identifi-

cation27 of chemical compounds. It was used for simultaneous determination of two

and four component systems by ion selective electrode28 (non-Nernstian) data, chemi-

cal kinetics and kinetic methods of analysis.

EXPERIMENTAL

Hardware and software: An IBM Pentium II computer is employed and

MATLAB (version 4.2c.1 for windows environment) from Math Works Inc. is

employed to develop programs and generate graphic outputs. Regression analysis

with polynomials of different order was performed within - house programs developed

in the laboratory (LINREG, POLREG). Software package Trajan 4.0 is used for

neural network analysis. This package has an additional advantage of providing

intelligent problem server (IPS) output.

RESULTS AND DISCUSSION

Applications of neural networks in a kinetic reaction: The neural network

modeling and other polynomial models has been applied to the data set of literature

report29 reaction of kinetic study of the MnO4
2-–Ru(CN)6

4- in perchlorate acid media.

Neural Network modeling and other polynomial models applied to the above reaction

to understand the effect of hydrogen ion on the oxidation of Ru(CN)6
4-   with MnO4

2-.

The study of the MnO4
2-–Ru(CN)6

4- reaction was investigated29 by stopped flow

technique and the ionic strength was maintained with perchlorate acid media (µ =

1.02). The study showed a "bell like" dependence of kobs on log [H+] in one region

and independent of log [H+]-1 in another. Neural network modeling and other
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Neighbour  
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Genetic Input 

Selection, 
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Network Designer 

Matlab; 

:Neural 

Network 

Toolbox 

Perceptron 

RBF 

Hopfield 

LVQ 

Competitive NN 

Kohonen 
Elman 

Hebb 

BP 
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Marquard 

MATLAB 

Signal Processing 

Nonlinear control 

Financial 

modeling 

Chart-3: Features of Neural Network packages

Package
Type of

network Algorithm
Salient

features

STATISTIC

A: neutral

Networks

Direct

Executing

Simulation

in Real time

(DESIRE

NEUNET)
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TABLE-1 
THE kobsd VALUES29 (AT 25 ºC) AS A FUNCTION OF HYDROGEN ION 

CONCENTRATION AND CALCULATED RATE CONSTANTS (kNN)  
AND RESIDUAL VALUES BY NN MODEL 

S. No. [H+] M kobsd (M
-1 S-1) 

Calculated rate 
constant by NN (kNN) 

Residual value by 
NN 

1. 0.008 78.0 77.674 0.30914 

2. 0.013 42.4 44.918 -2.5137 

3. 0.015 57.2 63.391 -6.1879 

4. 0.017 69.8 80.357 -10.554 

5. 0.016 97.2 76.415 20.79 

6. 0.019 98.0 93.964 4.0337 

7. 0.022 111.0 108.80 2.204 

8. 0.024 109.0 116.01 -7.0128 

9. 0.026 118.0 121.80 -3.8047 

10. 0.029 125.0 128.68 -3.6814 

11. 0.033 142.0 135.63 6.3652 

12. 0.037 144.0 140.85 3.1482 

13. 0.040 133.0 143.87 -10.866 

14. 0.042 148.0 145.50 2.502 

15. 0.050 158.0 149.41 8.5932 

16. 0.061 153.0 149.44 3.5613 

17. 0.070 146.0 146.52 -0.51869 

18. 0.081 127.0 141.19 -14.187 

19. 0.100 135.0 130.96 4.0383 

20. 0.122 127.0 120.41 6.5887 

21. 0.130 117.0 117.06 -0.060395 

22. 0.160 106.0 106.30 -0.3005 

23. 0.200 89.6 94.716 -5.1157 

24. 0.240 87.5 84.996 2.5039 

25. 0.281 75.5 76.722 -1.2223 

26. 0.320 74.8 70.485 4.3152 

27. 0.340 64.5 67.889 -3.3887 

28. 0.360 67.4 65.672 1.7281 

29. 0.460 54.7 58.704 -4.0044 

30. 0.480 69.2 57.638 11.562 

31. 0.500 40.4 56.444 -16.044 

32. 0.560 65.3 51.233 14.067 

33. 0.620 37.8 44.268 -6.4682 

34. 0.640 42.5 42.144 0.35574 

35. 0.660 37.5 40.291 -2.7913 

36. 0.700 37.7 37.478 0.2218 

37. 0.720 35.7 36.477 -0.7775 

38. 0.740 33.6 35.696 -2.0963 

39. 0.780 37.1 34.633 2.4672 

40. 0.900 35.7 33.466 2.2337 
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polynomial models are applied to the data of this reaction for calculating of the rate

constant (kNN) and the residual values (residual 1, 2.3, 4 and 8) of a reaction.

The calculated rate constants (kNN) and the residual values by using NN modeling

are presented in the Table-1. The reported data of the rate constants (kobsd) as a

function of hydrogen ion concentration are also given29 in the Table-1.

A graph (Fig. 1) is drawn in between the kobsd values and hydrogen ion concen-

tration. This scatter plot indicates the complex dependence of kobs on H+. Another

graph is drawn (Fig. 2) in between the log kobsd and log [H+], it also yields a peculiar

behaviour. In view of this, the rate constants have been evaluated by using linear,

quadratic, cubic models and with higher order polynomials. In the Fig. 3 a plot is

drawn in between the residual 1 and H+ concentration and also another plot is drawn

in between the kobsd values against concentration of [H+] in the same Figure. The top

plot of the figure shows kobsd values as a function of [H+]. That is in the graph, the

bottom plot represents the residuals in kobsd when a linear model is considered with

[H+]. From that it is seen that the residuals (1) are quite large, showing that the

model fails in totality.

Fig. 1. Plot of  kobsd values vs. H+  concentration

 log [H+]

Fig. 2. Plot of log kobsd vs. log [H+]
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Concentration of H
+



Concentration of H+

Fig. 3. Plot of residual (1) vs. concentration of H+ and plot of

kobsd  vs. concentration of H+

Assuming a quadratic model and higher order polynomial models (up to 4th

order), the residuals have been calculated and are represented in the Fig. 4. This

plot also reveals that the model is inadequate as residuals are quite significant compared

to the kobsd values. This is further supported by the fact that the standard deviation in

parameters is much higher than the parameters in Table-2.

 

Concentration of H+

Fig. 4. Plot of residual values 2, 3, 4 vs. concentration of H+

and plot of kobsd vs. concentration of H+
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TABLE-2 
STANDARD DEVIATION IN PARAMETERS 

Polynomial model  

1 2 3 4 8 

a0 118.06 118.95 109.52 93.38 8.9 

(Sda0) 148.26 183.52 201.64 204.46 135.9 

a1 112.49 -125.22 112.30 687.76 5969.5 

(Sda1) 388.39 1516.1 314.06 5029.60 8752.3 

a2  17.057 752.56 -4050.90 -88337.0 

(Sda2)  1959.3 9306.10 25941.00 1.6864e+005 

a3   61.73 6627.10 5.9112e+005 

(Sda3)   7321.42 45590.20 1.4376e+006 

a4    -3411.20 -2.1702e+006 

(Sda4)    25653.00 6.369e+006 

a5     4.6318e+006 

(Sda5)     1.569e+007 

a6     -5.7176e+006 

(Sda6)     2.1625e+007 

a7     3.7789e+006 

(Sda7)     1.5576e+007 

a8     -1.0331e+006 

(Sda8)     4.5592e+006 

Model 1 : k = a0 + a1[H
+] 

Model 2 : k = a0 + a1[H
+] + a2[H

+]2 

Model 3 : k = a0 + a1[H
+] + a2[H

+]2 + a3[H
+]3 

Model 4 : k = a0 + a1[H
+] + a2[H

+]2 + a3[H
+]3 + a4[H

+]4 

Model 8 : k = a0 + a1[H
+] + a2[H

+]2 + a3[H
+]3 + a4[H

+]4 + a5[H
+]5 + a6[H

+]6 + a7[H
+]7 + a8[H

+]8 

 
Modeling with 8th order polynomial is also attempted (Fig. 5), comparing the

residual values 4 and 8; and this also failed, suggesting inadequacy of polynomial

model for variation of kobsd with H+.

 

Fig. 5. Plot of residual values of 4, 8 vs. [H+]
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Using quadratic model and higher order polynomial models (up to 8th order),

the residuals have been calculated. In all these cases these models are inadequate

and as the residuals are quite significant compared to the kobsd values. So the NN

modeling is applied to the reported literature data set for calculating the rate constant

(kNN) as well as the residual values (Table-1). The data set is analyzed using the

Trajan software. The output of the data set is presented in Fig. 6. This Figure shows

data, the training error (Tr.er), network architecture, training algorithm in tiled

windows.

Fig. 6. Trajan output

The Multi Layer Perceptron (MLP) architecture (1-4-4-1) gave a training error

of 0.04487 for 2000 epochs. The training algorithm used is Leven Berg Marquardt

algorithm (LM).The model parameters of 1-4-4-1 NN (Table-2) are pictorially

displayed in Fig. 7.

A comparison of residuals obtained with NN model and that of polynomial

order 4, shows that the residuals of NN model are very small.

The rate constant values are calculated by using 4th order polynomial and neural

network model. Further an attempt is made, these values are compared to the

reported values (kobs). The kobs and k calculated values are correlated better in NN

model compared to that obtained with a 4th order polynomial model (Fig. 8). So

NN modeling values correlated better with that of reported values.
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Fig. 7. Weight distribution

 

Fig. 8. Comparison of kobsd vs. kcal by NN model (a) and comparison of kobsd vs. 4th order

polynomial (b)

Finally, it is observed that the residuals with NN modeling are far less than that

in the polynomial model. The residuals of the kobsd with NN model (Table-1) are

very small indicating the capability of NN model highly complex non-linear

behaviour. So these results show the adequacy of the NN modeling in kinetic investi-

gation.
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