Asian Journal of Chemistry

Vol. 22, No. 8 (2010), 6519-6523

One-Pot Self-Condensation of Phenylboronic Acid with Phenols and Aldehydes

ALI SHARIFI*, M. SAEED ABAEE, MOJTABA MIRZAEI and M. REZA NAIMI-JAMAL[†] Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran Fax: (98)(21)44580762; Tel: (98)(21)44580720; E-mail: sharifi@ccerci.ac.ir

> An efficient procedure is developed for additive-free condensation of boronic acid with phenols and various aromatic and aliphatic aldehydes under solvent-free conditions.

> Key Words: Benzodioxaborinine, Boronic acid, Phenols, Aldehydes, Solvent-free.

INTRODUCTION

Condensation of phenols and aldehydes with boronic acid is a well-known method for the synthesis of dioxaborins. The products are precursors for facile *ortho* substitution of phenols¹, preparation of quinone methides for Diels-Alder cycloadditions² and protection of diols^{3,4}. The usefulness of the reaction also arises from the application of the dioxaborins as key intermediates for preparation of a variety of natural and synthetic products such as saligenol derivatives⁵, polycyclic chromans^{6,7}, cannabinoids⁸, precocene and robustadial derivatives⁹, decaline portion of (+)-compactin¹⁰, (+) decursinol¹¹ and thielocin¹².

The scope of the process, primarily reported by Peer under acid catalysis for formaldehyde in refluxing benzene¹³, was later improved by Nagata using optimized reaction conditions and employing other aldehydes⁵. Dufresne *et al.* also offered a more efficient synthetic procedure by using dichlorophenylborane¹⁴. However, the available methods are either conducted under environmentally unsafe conditions^{1.5}, are limited to the condensation of phenols with more reactive aldehydes¹⁴, or needs labor and time consuming procedures to make the starting reagents¹⁵⁻¹⁷. Due to environmental and economic reasons, solvent-free reactions have been of huge interest in synthetic organic chemistry in the last two decades¹⁸⁻²¹. In the framework of our investigations on the development of environmentally friendly procedures²²⁻²⁵, we recently communicated a solid supported synthesis of dioxaborines under microwave irradiation²⁶. We now wish to report a general procedure for the title reaction applicable to the condensation of both aliphatic and various aromatic aldehydes with different phenols in absence of solvent, additive, or external stimulant (**Scheme-I**).

[†]Organic Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.

EXPERIMENTAL

All reported yields are isolated yields. IR spectra were recorded on a FT-IR Bruker Vector 22 infrared spectrophotometer using KBr disks. NMR spectra were recorded on FT-NMR Bruker Ultra ShieldTM (500 MHz) or FT-NMR Bruker AC 80 MHz as CDCl₃ solutions with TMS as internal reference. GC-MS spectra were obtained on Fisons 8000 Trio instrument at ionization potential of 70 eV. Elemental analyses were performed using a Thermo Finnigan Flash EA 1112 instrument.

General procedure: A solvent-free mixture of a phenol (1.0 mmol), phenylboronic acid (1.2 mmol) and an aldehyde (1.1 mmol) was thoroughly ground in a mortar. The mixture was transferred to a flask and the flask was heated at 80-90 °C in an oven for the time period specified in Table-1. The course of the reaction was monitored by TLC. The mixture was cooled to room temperature and the product was separated by column chromatography using 1:4 EtOAc/hexane solution. Products **1g**, **1h** and **1l** were characterized based on their spectroscopic and elemental analysis data. All other products were known and their specifications were compared with the literature data^{2,5,26}.

4-(4-Chlorophenyl)-2-phenyl-4*H*-naphtho[1,2-d][1,3,2]dioxaborinine (**1g**, C₂₃H₁₆BClO₂). White solid in 75 % yield; m.p. 160-161 °C; ¹H NMR (CDCl₃) δ : 6.28 (s, 1H), 6.87 (d, 1H, *J* = 8.0 Hz), 7.29 (s, 5H), 7.39-7.80 (m, 6H), 8.02-8.11 (m, 2H), 8.45-8.55 (m, 1H); ¹³C NMR (CDCl₃) δ : 75.4, 119.1, 122.3, 123.3, 124.1, 125.5, 126.8, 127.3, 128.1, 128.2, 128.3, 129.4, 129.5, 132.3, 134.5, 134.8, 135.1, 141.6, 144.2; IR (KBr, v_{max}, cm⁻¹): 3066, 3041, 2360, 2331, 1595, 1494, 1440, 1390, 1320, 1197, 1112, 1093, 1022; MS (70 eV) m/z (%) 373, 372, 370 (M⁺), 369, 335, 266, 259, 231, 202, 155, 127, 104, 77; Calcd. (%) for C₂₃H₁₆BClO₂: C, 74.53; H,4.35. Found (%): C, 74.47; H, 4.37.

6-Chloro-2-phenyl-4*H*-naphtho[1,2-d][1,3,2]dioxaborinine (**1h**, $C_{17}H_{12}BCIO$). White solid in 88 % yield; m.p. 114-6 °C; ¹H NMR (CDCl₃) δ : 5.26 (s, 2H), 7.12-7.19 (m, 1H), 7.45-7.82 (m, 5H), 7.98-8.32 (m, 4H); ¹³C NMR (CDCl₃) δ : 63.2, 117.0, 122.3, 122.6, 124.8, 126.3, 126.6, 1126.8, 27.3, 127.9, 128.3, 131.2, 132.2, 134.9, 143.6; IR (KBr, v_{max} , cm⁻¹): 3064, 3047, 2340, 2290, 1600, 1467, 1377, 1320, 1253, 1124, 1068, 1028; MS (70 eV) m/z (%) 297, 296, 294 (M⁺), 190, 162, 127, 104, 77; Calcd. (%) for $C_{17}H_{12}BCIO$: C, 69.32; H, 4.11. Found (%): C, 69.20; H, 4.10.

1-(4-Chlorophenyl)-3-phenyl-1*H*-naphtho[2,1-d][1,3,2]dioxaborinine (**1**), C₂₃H₁₆BClO₂). White solid in 85 % yield; m.p. 140-142 °C; ¹H NMR (CDCl₃) δ: 6.72 (s, 1H), 7.25 (s, 5H), 7.26-7.51 (m, 6H), 7.71-8.10 (m, 4H); ¹³C NMR (CDCl₃)

Vol. 22, No. 8 (2010)

Condensation of Phenylboronic Acid with Phenols and Aldehydes 6521

Entry	Phenol	Aldehyde	Product	Time (h)	Yield (%) ^a
1	phenol	нсно	O _B -Ph 1a	18	75
2	2-methoxyphenol	нсно	OMe O B Ph 1b Cl	18	60
3	2-chlorophenol	НСНО	O _B -Ph 1c	18	60
4	naphthalen-1-ol	нсно		3	98
5	naphthalen-1-ol	C ₆ H₅CHO	O-B Ph Ph	18	65
6	naphthalen-1-ol	<i>p-</i> NO ₂ -C ₆ H ₄ CHO		18 NO ₂ -p)	85
7	naphthalen-1-ol	₽-CI-C ₆ H₄CHO		18 CI- <i>p</i>)	75
8	4-chloronaphthalen-1-ol	НСНО		3	88
9	naphthalen-2-ol	НСНО	CI OB ^{-Ph} Ii	3	98
10	naphthalen-2-ol	C ₆ H₅CHO		18	80
11	naphthalen-2-ol	<i>p</i> -NO ₂ -C ₆ H ₄ CHO	(p-O ₂ N)C ₆ H ₄ O _B -Ph	18	83
12	naphthalen-2-ol	ρ-CI-C ₆ H₄CHO	(p-Cl)C ₆ H ₄ O _B Ph	18	85
13	naphthalen-2-ol	<i>п-</i> С ₆ Н ₁₃ СНО	C ₆ H ₁₃ O _B Ph	18	82

 TABLE-1

 SOLVENT-FREE SYNTHESIS OF DIOXABORININES

^a isolated yields

δ: 73.1, 116.6, 119.7, 122.9, 124.9, 127.6, 128.3, 129.2, 129.5, 129.6, 120.4, 130.8, 130.9, 131.3, 132.2, 134.8, 135.0, 141.0, 147.6; IR (KBr, v_{max} , cm⁻¹): 3066, 3024, 2900, 1597, 1348, 1249, 1095; MS (70 eV) m/z (%) 373, 370 (M⁺), 336, 266, 260, 231, 202, 155, 127, 104, 77; Calcd. (%) for C₂₃H₁₆BClO₂: C, 74.53; H,4.35. Found (%): C, 74.42; H, 4.28.

RESULTS AND DISCUSSION

A variety of aldehydes were subjected to condense with phenylboronic acid and different phenols under solvent-free conditions (Table-1). Reaction of phenol and its derivatives with paraformaldehyde took 18 h to give moderate amounts of products **1a-c** (entries 1-3). Naphthol derivatives gave higher yields of their respective products. It took only 3 h for paraformaldehyde to nearly quantitatively give **1d** in reaction with 1-naphthol (entry 4). Aromatic aldehydes took longer time to give similar results in reaction with naphthalen-1-ol (entries 5-7). Comparable results were obtained for the reactions of other naphthol substrates (entries 8-12). Finally, *n*-heptanal was subjected to the conditions to examine the reactivity of aliphatic aldehydes giving product **1m** after 18 h (entry 13).

Conclusion

In summary, a new procedure is offered which provides an efficient condensation of boronic acid with phenols and aldehydes without using any solvent or additive.

ACKNOWLEDGEMENT

Partial financial support of this work by the Ministry of Science, Research and Technology of Iran is gratefully appreciated.

REFERENCES

- 1. C.K. Lau, H.W.R. Williams, S. Tardiff, C. Dufresne, J. Scheigetz and P.C. Belanger, *Can. J. Chem.*, **67**, 1384 (1989).
- J.D. Chambers, J. Crawford, H.W.R. Williams, C. Dufresne, J. Scheigetz, M.A. Bernstein and C.K. Lau, *Can. J. Chem.*, **70**, 1717 (1992).
- 3. P.J. Duggan and E.M. Tyndall, J. Chem. Soc. Perkin Trans. I, 1325 (2002).
- 4. C.D. Roy, R. Soundararajan and H.C. Brown, Monatsh. Chem., 139, 241 (2008).
- 5. W. Nagata, K. Okada and T. Aoki, Synthesis, 365 (1979).
- 6. S. Bissada, C.K. Lau, M.A. Brenstein and C. Dufresne, Tetrahedron Lett., 35, 3691 (1994).
- 7. J.D. Pettigrew, J.A. Cadieux, S.S.S. So and P.D. Wilson, Org. Lett., 3, 467 (2005).
- 8. W.S. Murphy, S.M. Tuladhar and B. Duffy, J. Chem. Soc. Perkin Trans. I, 605 (1992).
- 9. S. Bissada, C.K. Lau, M.A. Brenstein and C. Dufresne, *Can. J. Chem.*, **72**, 1866 (1994).
- 10. C. Dufresne, D. Cretney, C.K. Lau, V. Mascitti and N. Tsou, Tetrahedron: Asym., 13, 1965 (2002).
- 11. J.H. Lee, H.B. Bang, S.Y. Han and J.G. Jun, Tetrahedron Lett., 48, 2889 (2007).
- 12. Y. Genisson and R.N. Young, Tetrahedron Lett., 35, 7747 (1994).
- 13. H.G. Peer, Recl. Trav. Chim. Pays-Bas, 79, 825 (1960).
- 14. C.K. Lau, M. Mintz, M.A. Brenstein and C. Dufresne, Tetrahedron Lett., 34, 5527 (1993).
- 15. C.J.W. Brooks and J. Watson, Chem. Commun., 952 (1967).
- 16. R.H. Cragg and M. Nazery, J. Chem. Soc. Dalton Trans., 162 (1974).

Vol. 22, No. 8 (2010)

- 17. H.G. Kuivila, A.H. Keough and E.J. Soboczensky, J. Org. Chem., 19, 780 (1954).
- 18. P.J. Walsh, H. Li and C.A. de Parrodi, Chem. Rev., 107, 2503 (2007).
- 19. K. Tanaka and F. Toda, Chem. Rev., 100, 1025 (2000).
- 20. C. Yu, P. Guo, C. Jin and W. Su, J. Chem. Res., 333 (2009).
- 21. M. Rahman, A. Roy, A. Majee and A Hajra, J. Chem. Res., 178 (2009).
- 22. A. Sharifi, M. Mirzaei and M.R. Naimi-Jamal, Monatsh. Chem., 137, 213 (2006).
- 23. A. Sharifi, M.S. Abaee, M. Mirzaei and V. Abedi, Arkivoc, 17 (2006).
- 24. A. Sharifi, R. Salimi, M. Mirzaei and M.S. Abaee, Synth. Commun., 37, 1825 (2007).
- 25. A. Sharifi, M.S. Abaee, M. Mirzaei and R. Salimi, J. Iran Chem. Soc., 5, 135 (2008).
- 26. M.R. Naimi-Jamal, M. Mirzaei, M. Bolourtchian and A. Sharifi, *Synth. Commun.*, **36**, 2711 (2006).

(Received: 31 December 2009; Accepted: 20 May 2010) AJC-8722