Asian Journal of Chemistry

Vol. 22, No. 8 (2010), 6509-6512

Arylnaphthalene Lignans from Daphne acutiloba Rehd.

JING-LI CAO†‡, JING-JIAO XUE†‡, SHUN-QIN HE, GUANG-YU YANG†§ and QIU-FEN HU*†‡ †School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031, P.R. China E-mail: huqiufena@yahoo.com.cn

A new arylnaphthalene lignan (daphnelignan B), together with three known one, were isolated from the leaf and steam of *Daphne acutiloba Rehd*. Their structures were determined by means of HRESIMS, extensive ¹D and ²D NMR spectroscopic studies and chemical evidence. The anti-HIV-1 activity of daphnelignan B was also evaluated and it shows an anti-HIV-1 activity with a TI (Therapeutic Index) above 35.62.

Key Words: *Daphne acutiloba* Rehd., Arylnaphthalene lignans, Daphnelignan B, Anti-HIV-1 activity.

INTRODUCTION

Daphne acutiloba Rehd. (thymelaeaceae), an evergreen shrub mainly distributed in west China, has been used as a traditional Chinese medicine named "Dian Rui Xiang" for the treatment of rheumatoid arthritis, apoplexia and stomach ache¹⁻³. Previous phytochemical research on *Daphne acutiloba Rehd*. has revealed that daphnane diterpenes, coumarines as well as lignans are major principles isolated from this plant⁴⁻⁶.

In order to investigates the components of the aerial parts and search for potential leads for drug development, phytochemical investigation on *Daphne acutiloba Rehd*. was carried out. This study led to the isolation of a new arylnaphthalene lignan, daphnelignan B (1), together with three known one, furfuracin A (2)⁷, justicidin B (3)⁸ and diphyllin (4)⁹. Their structures were established by means of HRESIMS and extensive NMR spectra. The anti-HIV-1 activity of daphnelignan B was also evaluated.

EXPERIMENTAL

Optical rotation was measured in Horiba SEPA-300 High Sensitive Polarimeter. IR spectra were obtained in KBr disc on a Bio-Rad Wininfmred spectrophotometer. ESI-MS were measured on a VG Auto Spec-3000 MS spectrometer. ¹H, ¹³C and ²D

[‡]Department of Chemistry, Yuxi Teacher's College, Yuxi 653100, P.R. China.

[§]Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Acedemy of Tobacco Science, Kunming 650106, P.R. China.

6510 Cao et al.

Asian J. Chem.

NMR spectra were recorded on Bruker DRX-500 instruments with TMS as internal standard. Column chromatography was performed on silica gel (200-300 mesh) or on silica gel H (10-40 μ m, Qingdao Marine Chemical Inc., China). On second separate used Agilent 1100 HPLC equipped with ZORBAX-C₁₈ (9.4 × 250 nm, 5.0 μ m) column and DAD detector.

The leaf and steam of *Daphne acutiloba Rehd*. was collected in Lijian County, Yunnan Province, P. R. China, in June 2007 and was identified by Prof. N Yuan. A voucher specimen (No. YNNi 07-8-07) was deposited in our laboratory.

Extraction and isolation: The air-dried and powdered leaf and stem of *Daphne acutiloba Rehd.* (2.0 kg) were extracted with 70 % aqueous Me₂CO (5.0 L × 3, 24 h each) at room temperature and the extract was partitioned successively with petroleum ether (8.0 L × 3) and EtOAc (8.0 L × 3), respectively. The EtOAc extract (63.7 g) was subjected to column chromatography over silica gel eluting with a CHCl₃-Me₂CO (1:0-0:1, 30 L) gradient system. The 8:2 fraction (4.76 g) was further purified by HPLC with mobile phase (MeOH-H₂O 65:35) to yield daphnelignan B (11.8 mg), furfuracin A (36.5 mg), justicidin B (47.5 mg) and diphyllin (28.1 mg).

Anti-HIV-1 assay: The cytotoxicity assay against C8166 cells (CC50) was assessed using the MTT method and anti-HIV-1 activity was evaluated by the inhibition assay for the cytopathic effects of HIV-1 (EC50)¹⁰.

RESULTS AND DISCUSSION

Daphnelignan B (Fig. 1) was obtained as colourless amorphous crystals. Its UV spectrum showed strong absorption maximum at 238 and 287 nm, indicative of a naphthalene chromophore⁹. The IR spectrum showed absorption bands of hydroxyl groups at 3451 and 3415 cm⁻¹. The compound exhibited a quasimolecular ion at m/z 391.1524 [M+Na]⁺ in its HRESI mass spectrum (calcd. 391.1521), establishing its molecular formula as $C_{22}H_{24}O_5$ with eleven degrees of unsaturation. The ¹³C NMR spectrum (Table-1) exhibited 22 carbon signals which could be classified by DEPT experiments into those of 11 quaternary carbons, 5 methines, 2 methyl carbons and 4 methoxyl groups. The ¹H NMR (Table-1) spectra showed singlet signals of 2 methyl groups ($\delta_{\rm H}$ 1.98 s and 2.40 s), 4 methoxyl groups ($\delta_{\rm H}$ 3.72 s, 3.78 s, 3.83 s and 3.88 s), 1 hydroxyl protons (δ_H 11.07 s) and 5 aromatic protons (δ_H 6.35 s, 6.35 s, 6.82 s, 6.91 s, 7.38 s). These spectroscopic data and the calculated degrees of unsaturation support the arylnaphthalene basic structure of this compound. The HMBC correlation (Fig. 2) from the signal of H-2' ($\delta_{\rm H}$ 6.35) to C-7' ($\delta_{\rm C}$ 138.9 s) established the connectivity between the C-1' position on the benzene ring with the C-7' position on the naphthalene unit. The methyl resonance H-9 ($\delta_{\rm H}$ 2.40 s) displayed HMBC correlations with C-7 (δ_c 126.3 d), C-8 (δ_c 133.8 s) and C-8' (δ_c 131.4 s), while another methyl signal H-9' (δ_c 1.98 s) showed HMBC cross peaks with C-7' $(\delta_{\rm C} 138.9 \text{ s})$ and C-8' $(\delta_{\rm C} 131.4 \text{ s})$, confirming their positions at C-9 and C-9' of the naphthalene moiety, respectively. Therefore, the basic skeleton of compound 1 could be deduced as an arylnaphthalene lignan. Four methoxy group located at C-4, C-3',

Arylnaphthalene Lignans from Daphne acutiloba Rehd. 6511

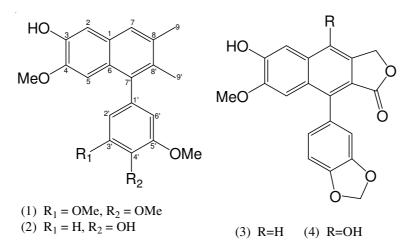


Fig. 1. Structure of arylnaphthalene lignans in Daphne acutiloba Rehd.

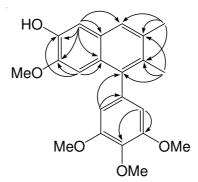


Fig. 2. Selected HMBC correlations daphnelignan B

TABLE-1
¹ H NMR AND ¹³ C NMR DATA OF DAPHNELIGNAN B IN PYRIDINE- <i>d</i> ₅

No.	δ_{C} (mult.)	$\delta_{\rm H}$ (mult, <i>J</i> , Hz)	No.	δ_{C} (mult.)	$\delta_{\rm H}$ (mult, J, Hz)
1	128.8 s		4'	140.1 s	
2	109.7 d	6.91 s	5'	151.2 s	
3	146.4 s		6'	105.3 d	6.35 s
4	148.4 s		7'	138.9 s	
5	106.3 d	6.82 s	8'	131.4 s	
6	129.5 s		9'	17.7 q	1.98 s
7	126.3 d	7.38 s	OMe-4	56.0 q	3.78 s
8	133.9 s		OMe-3'	55.7 s	3.72 s
9	21.2 q	2.40 s	OMe-4'	60.8 s	3.88 s
1'	133.0 s		OMe-5'	55.7 s	3.72 s
2'	105.3 d	6.35 s	OH-3		11.07 brs
3'	151.2 s				

6512 Cao et al.

Asian J. Chem.

C-4', C-5' in (1) was deduced by HMBC correlation of the proton signals (δ_H 3.78 s) with C-4 (δ_C 148.4 s), (δ_H 3.72 s) with C-3' (δ_C 151.2 s), C-5' (δ_C 151.2 s) and (δ_H 3.88 s) with C-4' (δ_C 140.1 s). The hydroxyl group located at C-4 was deduced by HMBC correlation of the proton signals (δ_H 11.1 s) with C-4 (δ_H 148.4 s). Thus, the chemical structure of **1** was established and given the name as daphnelignan B.

The potencies of daphnelignan B in preventing the cytopathic efects of HIV-1 in MT4 cells, as well as compound-induced cytotoxicity in MT4 cells in parallel with the antiviral activity were evaluated¹⁰. The results from the cell-based assays demonstrated potent anti-HIV-1 activity with EC50 (median effect concentration) value of 7.65 μ g/mL and a TI (therapeutic index) of greater than 35.62, daphnelignan B shows weak anti-HIV activity.

Daphnelignan B: C₂₂H₂₄O₅, colourless amorphous crystals; UV (MeOH), λ_{max} (log ε) 205 (6.12), 238 (4.87), 287 (3.16) nm; IR (KBr, v_{max} , cm⁻¹): 3451, 3415, 2936, 2908, 1655, 1634, 1618, 1526, 1462, 1422, 1375, 1045, 962, 874; ¹³C NMR and ¹H NMR data (pyridine- d_5 , 500 MHz), Table-1; HRESIMS (positive ion mode) m/z 391.1524 [M + Na]⁺ (calcd. 391.1521 for C₂₅H₃₆O₉).

REFERENCES

- 1. Y. C. Yang, Traditional Tibetan Medicines, Qinghai People's Press, Xining, pp. 427-429 (1991).
- 2. Y.C. Kong, J.X. Xue and P.H. Paul, J. Ethnopharm., 15, 1 (1986).
- 3. M. Taniguchi, A. Fujiwara, K. Baba and N.H. Wang, *Phytochemistry*, 49, 863 (1998).
- 4. M.S. Wang, W.G. Liu and L.J. Xin, Nanjing Yaoxueyuan Xuebao, 15, 1 (1984).
- 5. W. Zhang, W.D. Zhang, C. Zhang, R.H. Liu, T.Z. Li, P. Fu and L. Shan, *Phytother. Res.*, **21**, 1113 (2007).
- 6. L.G. Zhuang, O. Seligmann, H. Lotter and H. Wagner, *Phytochemistry*, 22, 265 (1983).
- 7. N. Rangkaew, R. Suttisri, M. Moriyasu and K. Kawanishi, Fitoterapia, 80, 377 (2009).
- 8. I. Gabbriella, P. Lucia, P. Sonia, C. Rosy, F. Raffaella and C.E. Isa Mariella, *Chem. Pharm. Bull.*, **50**, 844 (2002).
- 9. K. Kawazoe, A. Yutani and Y. Takaishi, Phytochemistry, 52, 1657 (1999).
- J.H. Wang, S.C. Tam, H. Huang, D.Y. Yang, Y.Y. Wang and Y.T. Zheng, *Biochem. Biophys. Res. Commun.*, 317, 965 (2004).

(Received: 4 January 2010; Accepted: 17 May 2010) AJC-8720