Synthesis and Crystal Structure of 1-(2-Fluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one

Wulan Zeng*, Lintong Wang, Huanmei Guo and Fangfang Jian \dagger
Department of Chemistry and Chemical Engineering, MicroScale Science Institute, Weifang University, Weifang-261061, P.R. China
Fax: (86)(536)8785802; Tel: (86)(536)8785802; E-mail: wulanzeng@ 163.com

Abstract

The compound 1-(2-fluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan1 -one, was synthesized and characterized by means of elemental analysis, IR spectrum and X-ray diffraction. It crystallizes in monoclinic, space group P2(1)/c with $\mathrm{a}=11.757(15), \mathrm{b}=4.904(6), \mathrm{c}=21.50(3) \AA, \beta=$ 118.11(6) ${ }^{\circ}, \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OF}, \mathrm{M}_{\mathrm{r}}=219.21, \mathrm{~V}=1093(2) \AA^{3}, \mathrm{Z}=4, \mathrm{Dc}=$ $1.326 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{~F}(000)=452, \mu=0.101 \mathrm{~mm}^{-1}$, final $\mathrm{R}_{1}=0.1101$. The triazole ring and 2 -fluorophenyl ring makes dihedral angles of 85.97°. There is obvious potentially weak intra- and intermolecular C-H...O hydrogen bonds in the crystal, which stabilizes the crystal structure.

Key Words: Synthesis, Crystal structure, 1-(2-Fluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one.

INTRODUCTION

Many N-heterocyclic compounds have attracted considerable attention in industry and agriculture because of their significant biological activities including efficient antifungal, antibacterial antitumor and pesticides activities ${ }^{1-3}$. The compounds containing a triazole ring system are well known as efficient fungi in pesticides and medicine by inhibiting the biosynthesis of ergosterol. Meanwhile they have also a good plant growth regulatory activity for a wide variety of crops. Lots of compounds containing a triazole group were synthesized in recent years ${ }^{47}$. However the compounds that contain triazole group and 2-fluorophenyl group in a single molecule have rarely been found. Herein, the synthesis, IR and crystal structure of the compound, 1-(2-fluorophenyl)-3-(1H-1,2,4-triazol-1-yl) propan-1-one have been reported (Scheme-I).

EXPERIMENTAL

All the reagents and solvents from commercial sources were used without further purification. Elemental analyses were obtained using an American Perkin-Elmer 2400 analyzer. IR spectra ($4000-400 \mathrm{~cm}^{-1}$), were recorded on a Nicolet FT-IR 510P spectrometer. Melting points were measure by using a melting point apparatus made in Shanghai Instrument Limited Company.

[^0]

Scheme-I

The intermediates I was prepared according to the literatural report ${ }^{8}$. The synthesis of the compound is described below. To a solution of 3-(dimethylamino)-1-(2fluorophenyl) propan-1-one hydrochloride ($4.62 \mathrm{~g}, 0.02 \mathrm{~mol}$) in water (25 mL) was added triazole ($1.38 \mathrm{~g}, 0.02 \mathrm{~mol}$). The mixture was heated under reflux for 5 h , yielding a copious precipitate. The colourless single crystal suitable for X-ray diffraction analysis was obtained by evaporation for petroleum ether and ethyl acetate ($1: 1 \mathrm{v} / \mathrm{v}$) after a few days. Yields 45%. m.p. 68.6-69.4 ${ }^{\circ} \mathrm{C}$. Anal. calcd. (\%) for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OF}$: C, $60.27 ; \mathrm{H}, 4.60, \mathrm{~N} ; 19.17$, found: C, $60.89 ; \mathrm{H}, 4.54, \mathrm{~N} ; 19.87$. Selected IR (KBr pellet, $\mathrm{V}_{\max }, \mathrm{cm}^{-1}$): $1683(\mathrm{C}=\mathrm{O}), 1508(\mathrm{C}=\mathrm{N})$.

Data collection and structure determination: A selected crystal of the reported compound was mounted on a SMART CCD diffractometer. The reflection data were measured at 293 K , using a graphite monochromator $\mathrm{MoK}_{\alpha}(\lambda=0.071073$ $\mathrm{nm})$ radiation with an ω scan mode. A total of 4475 reflections were collected and 1816 were independent $\left(\mathrm{R}_{\mathrm{int}}=0.0592\right)$ in the range of $1.96<\theta<24.99^{\circ}$, of which 1063 reflections were observed with $\mathrm{I}>2 \sigma(\mathrm{I})$.

The structure of the present compound was solved by SHELXS-97 program and was refined by SHELXL-97 program ${ }^{9}$. All the non-hydrogen atoms were refined by full-matrix least squares method. All hydrogen atoms were placed in the geometrically calculated positions. The contributions of these hydrogen atoms were included in the structure-factor calculations. The atomic scattering factors and anomalous dispersion corrections were taken from International Table for X-ray crystallography ${ }^{10}$. The final least-square cycle gave $\mathrm{R}=0.1101$ and $w R=0.2720\left(\mathrm{w}=/\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+\right.\right.$ $\left.(0.2000 \mathrm{P})^{2}+0.0000 \mathrm{P}\right]$, where $\left.\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{C}}{ }^{2}\right) / 3\right) . \mathrm{S}=1.216 .(\Delta / \sigma)_{\max }=0.000$, $(\Delta \rho)_{\min }=-0.638$ and $(\Delta \rho)_{\max }=0.600 \mathrm{e} / \AA^{3}$.

RESULTS AND DISCUSSION

The atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms in the present compound are given in Table-1 and the selected bond distances and bond angles in Table-2. A displacement ellipsoid plot with atomic numbering scheme is shown in Fig. 1 and a perspective view of the crystal packing in the unit cell in Fig. 2.

TABLE-1
ATOMIC COORDINATES $\left(\times 10^{4}\right)$ AND THERMAL PARAMETERS $\left(\AA^{2} \times 10^{3}\right)$

Atom	x	y	Z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{F}(1)$	$809(3)$	$2998(7)$	$690(2)$	$82(1)$
$\mathrm{O}(2)$	$3996(3)$	$1814(8)$	$344(2)$	$73(1)$
$\mathrm{O}(2)$	$3996(3)$	$1814(8)$	$344(2)$	$73(1)$
$\mathrm{N}(2)$	$2080(3)$	$497(7)$	$-1190(2)$	$51(1)$
$\mathrm{N}(3)$	$1052(4)$	$2065(9)$	$-1648(2)$	$65(1)$
$\mathrm{N}(5)$	$2759(4)$	$2728(10)$	$-1841(2)$	$78(2)$
$\mathrm{C}(7)$	$2949(4)$	$4054(8)$	$904(2)$	$45(1)$
$\mathrm{C}(8)$	$2986(4)$	$2090(9)$	$373(2)$	$48(1)$
$\mathrm{C}(9)$	$4056(4)$	$5624(9)$	$1298(2)$	$51(1)$
$\mathrm{C}(14)$	$3068(4)$	$946(12)$	$-1315(3)$	$72(2)$
$\mathrm{C}(15)$	$1796(4)$	$460(9)$	$-116(2)$	$53(1)$
$\mathrm{C}(16)$	$1919(4)$	$4476(9)$	$1045(2)$	$52(1)$
$\mathrm{C}(19)$	$1956(5)$	$6303(11)$	$1543(3)$	$64(1)$
$\mathrm{C}(27)$	$1989(5)$	$-1196(10)$	$-659(3)$	$60(1)$
$\mathrm{C}(28)$	$1529(5)$	$3319(12)$	$-2013(3)$	$70(2)$
$\mathrm{C}(29)$	$3051(5)$	$7826(11)$	$1913(3)$	$66(1)$

TABLE-2

SELECTED BOND LENGTHS (A) AND BOND ANGLES $\left({ }^{\circ}\right)$			
$\mathrm{C}(7)-\mathrm{C}(16)$	$1.394(6)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.510(6)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.402(6)$	$\mathrm{C}(8)-\mathrm{C}(15)$	$1.522(6)$
$\mathrm{C}(15)-\mathrm{C}(27)$	$1.524(6)$	$\mathrm{N}(2)-\mathrm{C}(27)$	$1.454(6)$
$\mathrm{N}(2)-\mathrm{C}(14)$	$1.329(6)$	$\mathrm{N}(2)-\mathrm{C}(27)$	$1.454(6)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.379(5)$	$\mathrm{N}(3)-\mathrm{C}(28)$	$1.313(7)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.227(5)$	$\mathrm{N}(5)-\mathrm{C}(14)$	$1.336(7)$
Angles	$\left({ }^{\circ}\right)$	Angles	$\left({ }^{\circ}\right)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{N}(3)$	$108.5(4)$	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$118.9(4)$
$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(27)$	$130.4(4)$	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(15)$	$120.2(4)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(27)$	$121.0(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(15)$	$120.9(3)$
$\mathrm{N}(2)-\mathrm{C}(27)-\mathrm{C}(15)$	$112.9(4)$	$\mathrm{C}(16)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.6(4)$
$\mathrm{C}(8)-\mathrm{C}(15)-\mathrm{C}(27)$	$113.0(4)$	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	$117.3(4)$

In the compound, the bond lengths and angles in the 1,2,4-triazole ring and phenyl ring are generally normal ${ }^{11,12}$. The bond lengths of $\mathrm{C}(7)-\mathrm{C}(8)(1.510(6), \AA)$, $\mathrm{C}(8)-\mathrm{C}(15)(1.522(6), \AA), \mathrm{C}(27)-\mathrm{C}(15)(1.524(6), \AA)$ are shorter than that of standard of C-C single bond length of $1.54 \AA$; while the bond lengths of $\mathrm{C}(27)-\mathrm{N}(2)(1.454(6)$, \AA) is similar to that of the standard C-N of $1.47 \AA$. The phenyl ring [C7, C9, C30, C29, C19, C16] with conjunction carbon atom C8 and oxygen O2 are quite planar (plane equation: $-0.0171 \mathrm{x}+0.7181 \mathrm{y}-0.6958 \mathrm{z}=0.1880$) and the largest deviation is $0.089 \AA$. The five atoms in the 1,2,4-triazole ring with the conjunction carbon atom

Fig. 1. Molecular structure with atomic numbering Scheme

Fig. 2. View of crystal packing down the b axis

C27 are also planar, the plane equation: $0.0019 \mathrm{x}+0.7559 \mathrm{y}+0.6547 \mathrm{z}=1.2694$ and the largest deviation is $0.016 \AA$. The triazole ring and 2 -fluorophenyl ring makes dihedral angles of 85.97°.

There exist some potential weak intra- and intermolecular interactions C-H $\cdots \mathrm{O}$ in the lattice (Table-3). The $\mathrm{O}(2)$ atom with $\mathrm{C}(14)$ atoms form weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions and the donor and acceptor distance are $3.3638 \AA$. While the $\mathrm{O}(2)$ atom with $\mathrm{C}(9)$ atoms form weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions and the donor and acceptor distance are $2.7519 \AA$. In solid state, all above extensive hydrogen bond net works which stabilize the crystal structure.

TABLE-3
INTERMOLECULAR INTERACTION DISTANCES (Å)

D-H-A	Symmetry	D-H	H $\cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A}) \cdots \mathrm{O}(2)$	$1-\mathrm{x},-\mathrm{y},-\mathrm{z}$	0.9300	2.4358	3.3638	175.54
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A}) \cdots \mathrm{O}(2)$	-	0.9300	2.4255	2.7519	100.54

ACKNOWLEDGEMENT

This project supported by the Natural Science Foundation of Shandong Province (No. Y2008B29).

REFERENCES

Z.Y. Chen and M.J. Wu, Org. Lett., 7, 475 (2005).
2. M.A. Pujar, T.D. Bharamgoudar and D.N. Sathyanarayana, Transition Met. Chem., 13, 423 (1988).
3. E. Bouwman, W.L. Driessen and J. Reedijk, Coord. Chem. Rev., 104, 143 (1990).
A.B. Lakshman and R.L. Gupta, Asian J. Chem., 21, 86 (2009).
A. Cansiz, A. Cetin, P. Kutulay and M. Koparir, Asian J. Chem., 21, 617 (2009).
F.F. Jian, L.Z. Xu, L. Li and C.Y. Zhu, Chin. J. Struct. Chem., 6, 539 (2004).
L.Z. Xu, F.F. Jian, Y.Q. Qin, G.P. Yu and K. Jiao, Chem. Res. Chin. U., 20, 305 (2004).
L.Z. Xu, K. Jiao, S.S. Zhang and S.S. Kuang, Bill. Korean Chem. Soc., 23, 1699 (2002).
G.M. Sheldrick, Acta Cryst., A64, 112 (2008).
10. Siemens, Area Detector Control and Integration Software, USA (1996).
11. M.Q. Xue, J.S. Ren, Q. Shen and Y.H. Lin, Chin. J. Struct. Chem., 19, 23 (2000).
12. J.C. Liu, G.C. Guo, H.W. Ma, C. Yang, G.W. Zhou, F.K. Zheng, S.H. Lin, M.S. Wang and J.S. Huang, Chin. J. Struct. Chem., 21, 371 (2002).

[^0]: \dagger MicroScale Science Institute, Weifang University, Weifang-261061, P.R. China.

