Asian Journal of Chemistry

Vol. 22, No. 8 (2010), 6185-6189

Synthesis and Crystal Structure of 1-(2-Fluorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one

WULAN ZENG*, LINTONG WANG, HUANMEI GUO and FANGFANG JIAN[†] Department of Chemistry and Chemical Engineering, MicroScale Science Institute, Weifang University, Weifang-261061, P.R. China Fax: (86)(536)8785802; Tel: (86)(536)8785802; E-mail: wulanzeng@163.com

The compound 1-(2-fluorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one, was synthesized and characterized by means of elemental analysis, IR spectrum and X-ray diffraction. It crystallizes in monoclinic, space group P2(1)/c with a = 11.757(15), b = 4.904(6), c = 21.50(3) Å, β = 118.11(6)°, C₁₁H₁₀N₃OF, M_r = 219.21, V = 1093(2)Å³, Z = 4, Dc = 1.326 g/cm³, F(000) = 452, μ = 0.101 mm⁻¹, final R₁ = 0.1101. The triazole ring and 2-fluorophenyl ring makes dihedral angles of 85.97°. There is obvious potentially weak intra- and intermolecular C-H···O hydrogen bonds in the crystal, which stabilizes the crystal structure.

Key Words: Synthesis, Crystal structure, 1-(2-Fluorophenyl)-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one.

INTRODUCTION

Many N-heterocyclic compounds have attracted considerable attention in industry and agriculture because of their significant biological activities including efficient antifungal, antibacterial antitumor and pesticides activities¹⁻³. The compounds containing a triazole ring system are well known as efficient fungi in pesticides and medicine by inhibiting the biosynthesis of ergosterol. Meanwhile they have also a good plant growth regulatory activity for a wide variety of crops. Lots of compounds containing a triazole group were synthesized in recent years⁴⁻⁷. However the compounds that contain triazole group and 2-fluorophenyl group in a single molecule have rarely been found. Herein, the synthesis, IR and crystal structure of the compound, 1-(2-fluorophenyl)-3-(1*H*-1,2,4-triazol-1-yl) propan-1-one have been reported (**Scheme-I**).

EXPERIMENTAL

All the reagents and solvents from commercial sources were used without further purification. Elemental analyses were obtained using an American Perkin-Elmer 2400 analyzer. IR spectra (4000-400 cm⁻¹), were recorded on a Nicolet FT-IR 510P spectrometer. Melting points were measure by using a melting point apparatus made in Shanghai Instrument Limited Company.

[†]MicroScale Science Institute, Weifang University, Weifang-261061, P.R. China.

6186 Zeng et al.

Asian J. Chem.

The intermediates I was prepared according to the literatural report⁸. The synthesis of the compound is described below. To a solution of 3-(dimethylamino)-1-(2-fluorophenyl) propan-1-one hydrochloride (4.62 g, 0.02 mol) in water (25 mL) was added triazole (1.38 g, 0.02 mol). The mixture was heated under reflux for 5 h, yielding a copious precipitate. The colourless single crystal suitable for X-ray diffraction analysis was obtained by evaporation for petroleum ether and ethyl acetate (1:1 v/v) after a few days. Yields 45 %. m.p. 68.6-69.4 °C. Anal. calcd. (%) for C₁₁H₁₀N₃OF: C, 60.27; H, 4.60, N; 19.17, found: C, 60.89; H, 4.54, N; 19.87. Selected IR (KBr pellet, v_{max} , cm⁻¹): 1683 (C=O), 1508 (C=N).

Data collection and structure determination: A selected crystal of the reported compound was mounted on a SMART CCD diffractometer. The reflection data were measured at 293 K, using a graphite monochromator MoK_{α} ($\lambda = 0.071073$ nm) radiation with an ω scan mode. A total of 4475 reflections were collected and 1816 were independent (R_{int} = 0.0592) in the range of 1.96 < θ < 24.99°, of which 1063 reflections were observed with I > 2 σ (I).

The structure of the present compound was solved by SHELXS-97 program and was refined by SHELXL-97 program⁹. All the non-hydrogen atoms were refined by full-matrix least squares method. All hydrogen atoms were placed in the geometrically calculated positions. The contributions of these hydrogen atoms were included in the structure-factor calculations. The atomic scattering factors and anomalous dispersion corrections were taken from International Table for X-ray crystallography¹⁰. The final least-square cycle gave R = 0.1101 and wR = 0.2720 (w = $/[\sigma^2(F_o^2) + (0.2000P)^2 + 0.0000P]$, where P = $(F_o^2 + 2F_C^2)/3$). S = 1.216. $(\Delta/\sigma)_{max} = 0.000$, $(\Delta\rho)_{min} = -0.638$ and $(\Delta\rho)_{max} = 0.600e/Å^3$.

RESULTS AND DISCUSSION

The atomic coordinates and equivalent isotropic thermal parameters for the non-H atoms in the present compound are given in Table-1 and the selected bond distances and bond angles in Table-2. A displacement ellipsoid plot with atomic numbering scheme is shown in Fig. 1 and a perspective view of the crystal packing in the unit cell in Fig. 2.

Vol. 22, No. 8 (2010)

TABLE-1 ATOMIC COORDINATES (\times 10⁴) AND THERMAL PARAMETERS ($\mathring{A}^2 \times$ 10³)

	(/		()
Atom	Х	у	Z	U (eq)
F(1)	809(3)	2998(7)	690(2)	82(1)
O(2)	3996(3)	1814(8)	344(2)	73(1)
O(2)	3996(3)	1814(8)	344(2)	73(1)
N(2)	2080(3)	497(7)	-1190(2)	51(1)
N(3)	1052(4)	2065(9)	-1648(2)	65(1)
N(5)	2759(4)	2728(10)	-1841(2)	78(2)
C(7)	2949(4)	4054(8)	904(2)	45(1)
C(8)	2986(4)	2090(9)	373(2)	48(1)
C(9)	4056(4)	5624(9)	1298(2)	51(1)
C(14)	3068(4)	946(12)	-1315(3)	72(2)
C(15)	1796(4)	460(9)	-116(2)	53(1)
C(16)	1919(4)	4476(9)	1045(2)	52(1)
C(19)	1956(5)	6303(11)	1543(3)	64(1)
C(27)	1989(5)	-1196(10)	-659(3)	60(1)
C(28)	1529(5)	3319(12)	-2013(3)	70(2)
C(29)	3051(5)	7826(11)	1913(3)	66(1)

TABLE-2

SELEC	TED BOND LENG	THS (Å) AND BOND ANC	ELES (°)
C(7)-C(16)	1.394(6)	C(7)-C(8)	1.510(6)
C(7)-C(9)	1.402(6)	C(8)-C(15)	1.522(6)
C(15)-C(27)	1.524(6)	N(2)-C(27)	1.454(6)
N(2)-C(14)	1.329(6)	N(2)-C(27)	1.454(6)
N(2)-N(3)	1.379(5)	N(3)-C(28)	1.313(7)
O(2)-C(8)	1.227(5)	N(5)-C(14)	1.336(7)
Angles	(°)	Angles	(°)
C(14)-N(2)-N(3)	108.5(4)	O(2)-C(8)-C(7)	118.9(4)
C(14)-N(2)-C(27)	130.4(4)	O(2)-C(8)-C(15)	120.2(4)
N(3)-N(2)-C(27)	121.0(3)	C(7)-C(8)-C(15)	120.9(3)
N(2)-C(27)-C(15)	112.9(4)	C(16)-C(7)-C(8)	126.6(4)
C(8)-C(15)-C(27)	113.0(4)	C(9)-C(7)-C(8)	117.3(4)

In the compound, the bond lengths and angles in the 1,2,4-triazole ring and phenyl ring are generally normal^{11,12}. The bond lengths of C(7)-C(8) (1.510(6), Å), C(8)-C(15) (1.522(6), Å), C(27)-C(15) (1.524(6), Å) are shorter than that of standard of C-C single bond length of 1.54 Å; while the bond lengths of C(27)-N(2) (1.454(6), Å) is similar to that of the standard C-N of 1.47 Å. The phenyl ring [C7, C9, C30, C29, C19, C16] with conjunction carbon atom C8 and oxygen O2 are quite planar (plane equation: -0.0171x + 0.7181y - 0.6958z = 0.1880) and the largest deviation is 0.089 Å. The five atoms in the 1,2,4-triazole ring with the conjunction carbon atom

6188 Zeng et al.

Asian J. Chem.

Fig. 1. Molecular structure with atomic numbering Scheme

Fig. 2. View of crystal packing down the b axis

C27 are also planar, the plane equation: 0.0019x + 0.7559y + 0.6547z = 1.2694 and the largest deviation is 0.016 Å. The triazole ring and 2-fluorophenyl ring makes dihedral angles of 85.97°.

There exist some potential weak intra- and intermolecular interactions C-H···O in the lattice (Table-3). The O(2) atom with C(14) atoms form weak C-H···O intermolecular interactions and the donor and acceptor distance are 3.3638 Å. While the O(2) atom with C(9) atoms form weak C-H···O intramolecular interactions and the donor and acceptor distance are 2.7519 Å. In solid state, all above extensive hydrogen bond net works which stabilize the crystal structure.

TABLE-3

INTERMOLECULAR INTERACTION DISTANCES (Å)								
D-H-A	Symmetry	D-H	H···A	D…A	D-H…A			
C(14)-H(14A)O(2)	1-x, -y, -z	0.9300	2.4358	3.3638	175.54			
C(9)-H(9A)O(2)	-	0.9300	2.4255	2.7519	100.54			

ACKNOWLEDGEMENT

This project supported by the Natural Science Foundation of Shandong Province (No. Y2008B29).

REFERENCES

- 1. Z.Y. Chen and M.J. Wu, Org. Lett., 7, 475 (2005).
- 2. M.A. Pujar, T.D. Bharamgoudar and D.N. Sathyanarayana, *Transition Met. Chem.*, **13**, 423 (1988).
- 3. E. Bouwman, W.L. Driessen and J. Reedijk, Coord. Chem. Rev., 104, 143 (1990).
- 4. A.B. Lakshman and R.L. Gupta, Asian J. Chem., 21, 86 (2009).
- 5. A. Cansiz, A. Cetin, P. Kutulay and M. Koparir, Asian J. Chem., 21, 617 (2009).
- 6. F.F. Jian, L.Z. Xu, L. Li and C.Y. Zhu, Chin. J. Struct. Chem., 6, 539 (2004).
- 7. L.Z. Xu, F.F. Jian, Y.Q. Qin, G.P. Yu and K. Jiao, Chem. Res. Chin. U., 20, 305 (2004).
- 8. L.Z. Xu, K. Jiao, S.S. Zhang and S.S. Kuang, Bill. Korean Chem. Soc., 23, 1699 (2002).
- 9. G.M. Sheldrick, Acta Cryst., A64, 112 (2008).
- 10. Siemens, Area Detector Control and Integration Software, USA (1996).
- 11. M.Q. Xue, J.S. Ren, Q. Shen and Y.H. Lin, Chin. J. Struct. Chem., 19, 23 (2000).
- J.C. Liu, G.C. Guo, H.W. Ma, C. Yang, G.W. Zhou, F.K. Zheng, S.H. Lin, M.S. Wang and J.S. Huang, *Chin. J. Struct. Chem.*, **21**, 371 (2002).

(Received: 13 November 2009; Accepted: 7 May 2010) AJC-8677