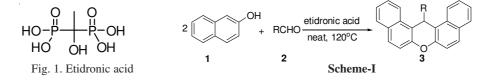
Asian Journal of Chemistry

Vol. 22, No. 8 (2010), 6173-6177

Synthesis of 14-Substituted-14*H*-dibenzo[*a*,*j*]xanthenes under Solvent-Free Conditions Presence of Etidronic Acid

LIQIANG WU*, WEIWEI MA, LIMIN YANG and FULIN YAN School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan-453003, P.R. China Fax: (86)(373)3029879; Tel: (86)(373)3029879; E-mail: wliq870@163.com


> A simple and efficient synthesis of 14-substituted-14*H*-dibenzo[*a,j*]xanthenes has been accomplished by the one-pot condensation of β -naphthol and aldehyde under solvent-free conditions in the presence of etidronic acid.

> Key Words: Dibenzo[a,j]xanthene, β -Naphthol, Etidronic acid, Solvent-free.

INTRODUCTION

Due to the potent biological and therapeutic properties exhibited by various 14substituted-14*H*-dibenzo[*a,j*]xanthenes¹, there is a continuous interest for novel synthetic methods in this area. The most common methods for the synthesis of 14-substituted-14*H*-dibenzo[*a,j*]xanthenes are the reaction of β -naphthol with aldehydes or acetals in the presence of a catalyst, such as *p*-TSA², sulfamic acid³, AcOH-H₂SO₄⁴, cyanuric chloride⁵, I₂⁶, HClO₄-SiO₂⁷, Yb(OTf)₃⁸, BF₃-SiO₂⁹, LiBr¹⁰, Al(HSO₄)₃¹¹, Dowex-50W¹², NaHSO₄-SiO₂¹³, ceric sulfate¹⁴, ionic liquid¹⁵, K₅CoW₁₂O₄₀·3H₂O¹⁶, NH₄H₂PO₄/SiO₂¹⁷. However, most of these procedures have signicant drawbacks such as long reaction times, low yields, harsh reaction conditions, difficult work-up and use of environmentally toxic or expensive reagents or media. Thus, there is still need of a simple and general for the one-pot synthesis of 14substituted-14*H*-dibenzo[*a,j*] xanthenes.

Etidronic acid (Fig. 1) is a phosphonic acid with mild acidity, is non-volatile and non-corrosive and is soluble in common organic solvents. It is a white crystalline solid with outstanding physical and chemical properties and is a commercially available cheap chemical¹⁸. Its applications as a reaction catalyst in organic syntheses have not yet been fully explored. In this paper, a simple, efficient and environmentally benign synthesis of 14-substituted-14*H*-dibenzo[*a*,*j*]xanthenes under solvent-free conditions in the presence of etidronic acid is reported (**Scheme-I**).

6174 Wu et al.

EXPERIMENTAL

NMR spectra were determined on Bruker AV-300 spectrometer at room temperature using TMS as internal standard, coupling constants (*J*) were measured in Hz; elemental analysis were performed by a Vario-III elemental analyzer; melting points were determined on a XT-4 binocular microscope and were uncorrected; commercially available reagents were used throughout without further purification unless otherwise stated.

General procedure for the preparation of 3: A mixture of the aldehyde (1 mmol), β -naphthol (2 mmol) and etidronic acid (0.2 mmol) was stirred at 120 °C for the appropriate time according to Table-1. Completion of the reaction was indicated by TLC. The reaction was cooled to room temperature, water was added and the mixture stirred for 5 min. The solid obtained was removed by filtration and recrystallized from ethyl alcohol (Scheme-I). All products were characterized by comparison of their physical data and ¹H and ¹³C NMR data with those of authentic samples.

TABLE-1 PREPARATION OF 14-SUBSTITUTED-14*H*-DIBENZO[<u>*a*,</u>*j*]XANTHENES CATALYZED BY ETIDRONIC ACID*

Entry	R	Time (h)	Yield (%)**	m.p. (ref.) (°C)	
а	Ph	3.0	92	181-182 (183-185) ¹⁴	
b	$4-(CH_3)C_6H_4$	3.5	88	225-226 (224-227) ¹⁴	
c	$4-(MeO)C_6H_4$	3.5	89	204-205 (202-204) ¹⁴	
d	$2-(MeO)C_6H_4$	3.5	86	256-257 (258-259) ⁵	
e	$4-(Cl)C_6H_4$	3.0	96	285-286 (286-289) ¹⁴	
f	$2-(Cl)C_6H_4$	3.0	92	213-214 (212-214) ¹⁴	
g	$4-(Br)C_6H_4$	3.0	94	295-296 (297-298) ^{15a}	
h	$4 - (NO_2)C_6H_4$	3.0	93	303-304 (306-308) ¹⁴	
i	$3 - (NO_2)C_6H_4$	3.0	94	208-209 (210-211) ¹⁴	
j	$2 - (NO_2)C_6H_4$	3.0	89	288-289 (290-291) ¹⁴	
k	$2,4-(Cl)_2C_6H_3$	4.0	87	250-251 (252-254) ¹⁴	
1	3,5-(MeO) ₂ C ₆ H ₃	4.0	85	186-187 (188-189) ¹⁴	
m	$4-(I)C_{6}H_{4}$	4.0	90	306-308	
n	Naphth-1-yl	4.0	83	200-201 (202-204) ¹⁴	
0	Pyrid-4-yl	4.0	85	227-228 (229-230) ^{15a}	
р	Et	4.0	82	146-147(148-151) ¹⁴	
q	i-Pr	4.0	80	156-157 (155-157) ⁵	

*All of the isolated products are known compounds and their spectra and physical data have been reported in the literatures 5, 14, 15a. **Isolated yield.

The spectral data of some new 14-substituted-14*H*-dibenzo[a,j]xanthenes are given below:

14-(4-Iodophenyl)-14*H***-dibenzo[***a***,***j***]xanthene (3m): White solid, m.p. 306-308 °C. IR (KBr, \nu_{max}, cm⁻¹): 3432, 3022, 2918, 1635, 1590, 1243, 833, 802. ¹H NMR (CDCl₃, 300 MHz): δ 6.60 (s, 1H, ArCH), 7.32-7.80 (s, 14H, ArH), 8.22 (d,** *J* **= 8.2 Hz, 2H, ArH). ¹³C NMR (CDCl₃, 75 MHz): δ 39.8, 116.5, 118.9, 123.2,** Vol. 22, No. 8 (2010)

125.1, 126.7, 129.6, 129.8, 130.8, 131.6, 131.9, 133.4, 144.0, 150.1. Anal. calcd for $C_{27}H_{17}OI$: C 66.96, H 3.54; found C 67.12, H 3.34.

RESULTS AND DISCUSSION

To choose optimum conditions, first, the effect of temperature on the rate of the reaction was studied for the preparation of 14-phenyl-14*H*-dibenzo[*a,j*]xanthene from the condensation reaction of β -naphthol (2 mmol) with benzaldehyde (1 mmol) under solvent-free conditions in the presence of 20 mol % etidronic acid (Table-2). At 120 °C, the reaction proceeded smoothly and giving short reaction time and high yield.

TABLE-2 TEMPERATURE OPTIMIZATION FOR THE SYNTHESIS OF 14-PHENYL-14*H*-DIBENZO[*a,j*]XANTHENE

Entry	Temperature (°C)	Time (h)	Yield (%)
1	90	6	67
2	100	6	78
3	110	4	88
4	120	4	91
5	130	4	90
6	140	4	91

Next, the study set out to determine optimal amount of etidronic acid, the reaction was carried out by varying amount of the catalyst (Table-3). Maximum yield was obtained with 20 mol % etidronic acid. Further increase in amount of the catalyst in the mentioned reaction did not has any significant effect on the product yield.

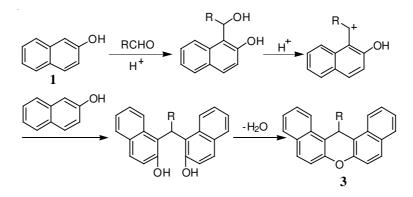

14-PHENYL-14 <i>H</i> - DIBENZO[<i>a,j</i>]XANTHENE							
Entry	Etidronic acid/mol (%)	Time (h)	Yield (%)				
1	0	10	0				
2	5	8	56				
3	10	6	78				
4	15	4	84				
5	20	4	91				
6	25	4	91				
7	30	4	90				

TABLE-3 AMOUNTS OF CATALYST OPTIMIZATION FOR THE SYNTHESIS OF 14-PHENYL-14H- DIBENZO[a,j]XANTHENE

Based on the optimized reaction conditions, a variety of aldehyde reacted smoothly with β -naphthol in the presence of 20 mol % of etidronic acid at 120 °C under solvent-free conditions to furnish the corresponding 14-substituted-14*H*-dibenzo[*a*,*j*]xanthenes in high yields. The reactions were rapid and in most cases 14-substituted-14*H*-dibenzo[*a*,*j*] xanthenes formation was complete in 5 h with excellent yields.

6176 Wu et al.

Concerning the reaction mechanism, we proposed that a carbocation is initially formed, aryl- or alkyl- methanebisnaphthols are then formed in the second step, which then undergo dehydration to give the final product **3** (Scheme-II).

Scheme-II

Conclusion

In conclusion, we have developed a convenient and efficient method for the synthesis of 14-aryl or alkyl-14*H*-dibenzo[*a*,*j*]xanthenes by single-pot condensation of β -naphthol with aromatic or aliphatic aldehydes in the presence of etidronic acid. The simple experimental procedure, solvent-free reaction conditions, utilization of an inexpensive and readily available catalyst, short period of conversion and excellent yields are the advantages of the present method.

ACKNOWLEDGEMENT

The authors acknowledged the financial support from Xinxiang Medical University.

REFERENCES

- (a) R.W. Lambert, J.A. Martin, J.H. Merrett, K.E.B. Parkes and G.J. Thomas, PCT Int. Appl. WO, 9706178 (1997), *Chem. Abstr.*, **126**, 212377y (1997); T. Hideo, Jpn. Tokkyo Koho, JP 56005480 (1981), *Chem. Abstr.*, 95, 80922b (1981); J.P. Poupelin, G. Saint-Rut, O. Foussard-Blanpin. G. Narcisse, G. Uchida-Ernouf and R. Lacroix, *Eur. J. Med. Chem.*, **13**, 67 (1978); R.M. Ion, *Prog. Catal.*, **2**, 55 (1997); G. Saint-Ruf, A. De and H. T. Hieu, *Bull. Chim. Ther.*, **7**, 83 (1972).
- 2. A.R. Khosropour, M.M. Khodaei and H. Moghannian, Synlett, 955 (2005).
- 3. B. Rajitha, B.S. Kumar, Y.T. Reddy, P.N. Reddy and N. Sreenivasulu, *Tetrahedron Lett.*, **46**, 8691 (2005).
- 4. R.J. Sarma and J.B. Baruah, *Dyes Pig.*, **64**, 91 (2005).
- 5. M.A. Bigdeli, M.M. Heravi and G.H. Mahdavinia, Catal. Commun., 8, 1595 (2007).
- 6. B. Das, B. Ravikanth, R. Ramu, K. Laxminarayana and B.V. Rao, *J. Mol. Catal. A: Chem.*, **255**, 74 (2006).
- 7. B. Das, D.N. Kumar, K. Laxminarayana and B. Ravikanth, Helv. Chim. Acta, 90, 1330 (2007).

Vol. 22, No. 8 (2010)

- 8. W. Su, D. Yang, C. Jin and B. Zhang, *Tetrahedron Lett.*, **49**, 3391 (2008).
- 9. B.B.F. Mirjalili, A. Bamoniri and A. Akbari, Tetrahedron Lett., 49, 6454 (2008).
- 10. A. Saini, S. Kumar, J.S. Sandhu, R. Khosropour, M.M. Khodaei and H. Moghannian, *Synlett*, 1928 (2006).
- 11. H.R. Shaterian, M. Ghashang and N. Mir, Arkivoc, 1 (2007).
- 12. G. Imani Shakibaei, P. Mirzaei and A. Bazgir, Appl. Catal. A: Gen., 325, 188 (2007).
- L. Nagarapu, M. Baseeruddin, N.V. Kumari, S. Kantevari and A.P. Rudradas, *Synth. Commun.*, 37, 2519 (2007).
- 14. N.P. Selvam, G. Shanthi and P.T. Perumal, Can. J. Chem., 85, 989 (2007).
- (a) P. Kumari, V. Yathindranath and S.M.S. Chauhan, *Synth. Commun.*, **38**, 637 (2008); (b) K. Gong, D. Fang, H.-L. Wang, X.-L. Zhou and Z.-L. Liu, *Dyes Pig.*, **80**, 30 (2009).
- 16. G.H. Mahdavinia, S. Rostamizadeh, A.M. Amani and Z. Emdadi, *Ultrason. Sonochem.*, 16, 7 (2009).
- 17. L. Nagarapu, S. Kantevari, V.C. Mahankhali and S. Apuri, Catal. Commun., 8, 1173 (2007).
- L.A. Dixon, in ed: L. Paquette, Encyclopedia of Reagents for Organic Synthesis; Wiley, Chichester, Vol. 6, pp. 4166-4169 (1995).

(Received: 9 November 2009; Accepted: 7 May 2010) AJC-8675

2ND EUROPEAN CONFERENCE ON PROCESS ANALYTICS AND CONTROL TECHNOLOGY

27 — 29 APRIL, 2011

GLASGOW, UNITED KINGDOM, EUROPE

Contact: Natalie Driscoll Claudia Martz CPACT DECHEMA e.V. C/o Department of Pure & Theodor-Heuss-Allee 25 Applied Chemistry 60486 Frankfurt am Main University of Strathclyde Germany 295 Cathedral Street, Glasgow Telephone: +49 (0)69 7564 129 Fax: +49 (0)69 7564 176 G1 1XL Telephone: +44 (0) 141 548 4836 E-mail: martz@dechema.de Fax: +44 (0) 141 548 4713 E-mail: natalie.driscoll@strath.ac.uk Web Site, http://events.dechema.de/en/Events/EuroPACT+2011/Contact-p-124981.html