Asian Journal of Chemistry

Vol. 22, No. 7 (2010), 5463-5467

Calculation of Coster-Kronig Enhancement Factors and L Subshell X-Ray Fluorescence Cross-Sections for ⁵⁵Cs

R. YILMAZ* and K. ARICI

Department of Physics, Faculty of Sciences and Arts, Yuzuncu Yil University, Van, Turkey E-mail: ryilmaz@yyu.edu.tr

X-Ray fluorescence cross-sections (σ_{Li} , $i = \alpha$, β , ℓ , γ) of the ⁵⁵Cs element were calculated theoretically at excitation energies for each L_i (i = 1, 2 and 3) subshell, respectively. Coster-Kronig transitions (f_{12}, f_{23} and f_{13}) are non-radiative transitions in which an inner shell vacancy is transferred from one subshell of an atom to another. The increase in L X-ray intensity due to the effect the Coster-Kronig transitions on L X-ray fluorescence cross sections were calculated theoretically. These calculated values were compared with other experimental and theoretical values. Calculations showed that the alteration in absolute intensities of L_{α} and L_{ℓ} lines arising from Coster-Kronig transitions are greater than that of L_{β} .

Key Words: X-Ray fluorescence, Non-radiative transitions, Coster-Kronig enhancement factors.

INTRODUCTION

Determination of X-ray fluorescence (XRF) cross-sections are important in many practical applications, such as elemental analysis by X-ray emissions technique, basic studies of nuclear and atomic processes leading to emission of X-rays and Auger electrons and dosimetric computations for medical physics and irradiational processes.

The X-ray fluorescence cross-section is defined as the product of corresponding photoelectric cross-section and fluorescence yield at a given excitation energy. However, in the case of the L-shell, particularly the L₃ subshell X-ray lines, estimation of XRF cross-sections is not so straightforward because of the possibility of the so-called Coster-Kronig transitions. These transitions are non-radiative transitions, in which the two inner shells electrons are situated on two different subshells of the same inner shell (*e.g.*, L₁ and L₃). Such transitions between L₁ and L₃ and between L₂ and L₃ sublevels cause an additional excitation of L₃ subshell state, thereby enhancing the fluorescence cross-sections for L_a and other subshell X-ray lines^{1.2}.

Recently, many researchers have investigated Coster-Kronig transitions for various elements; Ertugrul³⁻⁵, Oz *et al.*^{6,7}, Simsek⁸, Sogut *et al.*⁹ have investigated chemical

[†]Department of Physics, Faculty of Sciences and Arts, 7 Aralik University, Kilis, Turkey.

5464 Yilmaz et al.

Asian J. Chem.

effects on enhancement of Coster-Kronig transition of L₃ X-rays. The effect of fluorescence and Coster-Kronig yields on L X-ray emission cross-section has been studied by Hallak¹⁰. L X-ray production cross-sections, L subshell fluorescence yields and K-L vacancy transfer probabilities have been measured by Han *et al.*¹¹. Puri and Singh¹² determined L_i subshell fluorescence yields (ω_i) and L₁-L₃ Coster-Kronig transition (f₁₃) for elements with 70 ≤ Z ≤ 92 using photoionization technique. Kaya *et al.*¹³ measured L subshell fluorescence cross-sections and subshell yields in elements 55 ≤ Z ≤ 81 by 59.5 keV photons. Besides, the Coster-Kronig enhancement factors have investigated both experimentally and theoretically for some elements, recently. Oz *et al.*^{14,15} have investigated theoretical and experimental Coster-Kronig enhancement factors of some elements with 66 ≤ Z ≤ 72 and 74 ≤ Z ≤ 90. In a previous work¹⁶, we measured Coster-Kronig enhancement factors for Yb, Lu, Os and Pt elements.

In this paper, we studied the physical quantities that are affected by non-radiative transitions for lines. To investigate the role of Coster-Kronig transitions on L XRF cross-sections and the effect on the enhancement of L X-ray intensity, L subshells of for each element, excitation energies were chosen according to binding energies. It means that the cases are $B_{L_3} < E < B_{L_2}$, $B_{L_2} < E < B_{L_1}$ and $B_{L_1} < E < B_K$, where the L_1 , L_2 , L_3 are the subshells, B_{L_1} 's are the binding energies of the subshells, K is the ground shell and E is the excitation energy.

THEORETICAL CALCULATIONS

In this work, the theoretical L XRF cross-section are calculated by using following equations¹⁴

$$\sigma_{L\ell} = [\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3]\omega_3 F_{31}$$
(1)

$$\sigma_{L\alpha} = [\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3]\omega_3 F_{3\alpha}$$
(2)

$$\sigma_{L\beta} = \sigma_1 \omega_1 F_{1\beta} + (\sigma_1 f_{12} + \sigma_2) \omega_2 F_{2\beta} + [\sigma_3 + \sigma_2 f_{23} + \sigma_1 (f_{13} + f_{12} f_{23})] \omega_3 F_{3\beta}$$
(3)

$$\sigma_{L\gamma} = \sigma_1 \omega_1 F_{1\gamma} + (\sigma_2 + \sigma_1 f_{12}) \omega_2 F_{2\gamma}$$
⁽⁴⁾

where σ_1 , σ_2 and σ_3 are the photoionization cross-sections of the subshells L_1 , L_2 and L_3 , respectively¹⁷. ω_1 , ω_2 and ω_3 are the corresponding subshell fluorescence yields¹⁸. f_{12} , f_{13} and f_{23} are the Coster-Kronig transition probabilities¹⁸. The X-ray emission rates for the filling of L-shell vacancies ($F_{ij} = F_{3\alpha}$, $F_{3\ell}$, $F_{3\beta}$, $F_{2\beta}$, $F_{2\gamma}$, $F_{1\beta}$, $F_{1\gamma}$), calculated with Hartree-Slater theory, are taken from Scofield¹⁹, for example, $F_{3\alpha}$ value is given following relations².

$$F_{3\alpha} = \frac{\Gamma_3(M_4 - L_3) + \Gamma_3(M_5 - L_3)}{\Gamma_3}$$
(5)

where $\Gamma_3(M_4 - L_3)$ and $\Gamma_3(M_5 - L_3)$ are the partial radiative transition rates and Γ_3 is the total radiative transition rate of L_3 subshell¹⁹.

Dertermination of Coster-Kronig enhancement factors: As mentioned before, It is known that the Coster-Kronig transitions are non-radiative transitions. L XRF cross sections can be calculated for the elements following equations¹⁴

Vol. 22, No. 7 (2010)

$$\sigma_{L\ell} = \sigma_3 \omega_3 F_{31} \tag{6}$$

$$\sigma_{L\alpha} = \sigma_3 \omega_3 F_{3\alpha} \tag{7}$$

$$\sigma_{L\beta} = \sigma_1 \omega_1 F_{1\beta} + \sigma_2 \omega_2 F_{2\beta} + \sigma_3 \omega_3 F_{3\beta}$$
(8)

$$\sigma_{L\gamma} = \sigma_1 \omega_1 F_{1\gamma} + \sigma_2 \omega_2 F_{2\lambda} \tag{9}$$

However, in fact Coster-Kronig transitions are present. For this situation, L XRF cross-section were evaluated using the eqns. 1-4.

Theoretical Coster-Kronig enhancement factors (κ) can be calculated using the following equations¹⁴.

$$\kappa_{l,\alpha} = \frac{\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3}{\sigma_3} \tag{10}$$

$$\kappa_{\beta} = \frac{\sigma_{1}\omega_{1}F_{1\beta} + (\sigma_{1}f_{12} + \sigma_{2})\omega_{2}F_{2\beta} + [\sigma_{3} + \sigma_{2}f_{23} + \sigma_{1}(f_{13} + f_{12}f_{23})]\omega_{3}F_{3\beta}}{\sigma_{1}\omega_{1}F_{1\beta} + \sigma_{2}\omega_{2}F_{2\beta} + \sigma_{3}\omega_{3}F_{3\beta}}$$
(11)

Both the theoretical Coster-Kronig enhancement factors for 55Cs are given in Tables 4-6 (In these tables, when L₃ and L₂ were excited, Coster-Kronig enhancement factors were represented to κ_{i_1} ; when L₃, L₂ and L₁ were excited, Coster-Kronig enhancement factors were represented by κ_{i_2}).

RESULTS AND DISCUSSION

The L subshell XRF cross-sections were calculated using eqns. 1-4 and related data have been given in Tables 1-3. The values of Coster-Kronig enhancement factors for ⁵⁵Cs determined theoretically using eqns. 10 and 11, are listed in Tables 4-6. It is observed that the presence of non-radiative transitions cause changes in the X-ray intensities, thus it must be taken into account in quantative XRF. It is known that the non-radiative transitions compete with radiative transitions and they together determine both the absolute and the relative intensities of generated X-rays¹⁴.

(ONLY WHEN L₃ SUBSHELL WAS EXCITED) α_{L_ℓ} α_{L_c} $\alpha_{L_{\beta}}$ Element E (keV) Calculated Calculated Calculated 1164.319 55Cs 5.041 7228.981 269.357 TABLE-2 L XRF CROSS-SECTIONS (BARNS/ATOM) FOR ⁵⁵Cs (WHEN L₃ AND L₂ SUBSHELLS WERE EXCITED) $\sigma_{L_{\beta}}$ $\sigma_{L_{\gamma}}$ $\sigma_{L_{\sigma}}$ σ_{L_ℓ} Element E (keV) Calculated Calculated Calculated Calculated 4424.229 245.860 55Cs 5.401 6598.574 544.888

TABLE-1 L XRF CROSS-SECTIONS (BARNS/ATOM) FOR 55Cs

5466 Yilmaz et al.

Asian J. Chem.

Element	E (keV)	$\sigma_{L_{lpha}}$	$\sigma_{L_{\beta}}$	σ_{L_ℓ}	$\sigma_{L_{\gamma}}$
		Calculated	Calculated	Calculated	Calculate
55Cs	5.725	6206.257	5083.159	231.242	740.786
κ_{α_1} A	ND κ_{α_2} COSTE	TAB ER-KRONIG EI	LE-4 NHANCEMEN	Γ FACTORS FC	OR ⁵⁵ Cs
κ_{α_1} A Element	K_{α_2} COSTE	TAB ER-KRONIG EI κα	LE-4 NHANCEMEN [*]	FACTORS FC	κ_{α_2}
κ_{α_1} A Element	ND κ_{α_2} COSTE E (keV)	TAB ER-KRONIG EI 	LE-4 NHANCEMEN ^T x ₁ ılated	T FACTORS FC E (keV)	$\frac{0 \text{R}^{55} \text{Cs}}{\kappa_{\alpha_2}}$
$\kappa_{\alpha_1} A$ Element	$\frac{\text{ND } \kappa_{\alpha_2} \text{ COSTE}}{\text{E (keV)}}$	TAB ER-KRONIG EI 	LE-4 NHANCEMEN ^x , ilated 085	T FACTORS FC E (keV) 5.725	$\frac{\kappa_{\alpha_2}}{Calculated}$

TABLE-3

	TABLE-5
κ_{ℓ_1} AND κ_{ℓ_2}	COSTER-KRONIG ENHANCEMENT FACTORS FOR ⁵⁵ Cs

Flement	F (keV)	κ_{ℓ_1}	E (keV)	κ_{ℓ_2}
Liement		Calculated	L (Rev)	Calculated
₅₅ Cs	5.401	1.085	5.725	1.184
55				

TABLE-6 κ_{β_1} AND κ_{β_2} COSTER-KRONIG ENHANCEMENT FACTORS FOR ^{55}Cs

Flement	E (keV)	κ_{eta_1}	E (keV)	κ_{β_2}
Lienent		Calculated		Calculated
₅₅ Cs	5.401	1.021	5.725	1.101

In the present work, the results indicate 8.5 % for theoretical value of κ_{α_1} enhancement of the XRF cross-sections; 18.4 % for theoretical value of κ_{α_2} enhancements of the XRF cross-sections; 8.5 % for theoretical value of κ_{ℓ_1} enhancement of the XRF cross-sections; 18.4 % for theoretical value of κ_{ℓ_2} the XRF cross-sections; 2.1 % for theoretical value of κ_{β_1} the enhancement of the XRF cross-sections and 10.1 % for theoretical value of κ_{β_2} enhancement of the XRF cross-sections. Enhancements up to 65 % in the XRF cross-sections were reported by Rani et al.¹. Recently, Oz et al.^{14,15} reported the measurements of Coster-Kronig enhancement factors of some elements in the atomic number range $74 \le Z \le 90$ and $74 \le Z \le 90$ using photoionization of method. As a result of a study done by Oz *et al.*^{14,15}, the theoretical κ_{α_1} , κ_{ℓ_1} Coster-Kronig enhancement factors were reported as 8-9 % and up to 4-6 % for experimental; up to 20-30 % for theoretical κ_{α_2} , κ_{ℓ_2} and up to 14-20 % for experimental. In adidition, the theoretical κ_{β_1} CosterVol. 22, No. 7 (2010)

Kronig enhancement factors were reported as 2 %, 9-11 % for κ_{β_2} and up to 1-2 % for experimental κ_{β_1} , 8-10 % for κ_{β_2} . The present values are generally in agreement with the studies done by Oz *et al.*^{14,15}. Consequently, it can be seen from Tables 4-6 that the intensities of the L_β lines arising from Coster-Kronig transitions are smaller than that for L_α and L_ℓ.

REFERENCES

- 1. A. Rani, N. Nath and S.N. Chaturvedi, X-Ray Spectrometry, 18, 77 (1989).
- 2. J.L. Labar, X-Ray Spectrometry, 20, 111 (1991).
- 3. M. Ertugrul, J. Electron Spectrosc. Rel. Phenom, 125, 69 (2002).
- 4. M. Ertugrul, Appl. Radiat. Isot., 57, 63 (2002).
- 5. M. Ertugrul and J. Quant, Spectrosc. Radiat. Transfer, 72, 567 (2002).
- 6. E. Oz, Y. Ozdemir, N. Ekinci, M. Ertugrul, Y. Sahin and H. Erdogan, *Spectrochim. Acta*, **55B**, 1869 (2000).
- E. Oz, N. Ekinci, Y. Ozdemir, M. Ertugrul, Y. Sahin and H. Erdogan, J. Phys. B: At. Mol. Opt. Phys., 34, 631 (2001).
- 8. O. Simsek, Nucl. Instrum. Methods, 173B, 269 (2001).
- 9. O. Sogut, E. Buyukkasap, M. Ertugrul and A.K. Onder, J. Quant. Spectrosc. Radiat. Transfer, 74, 395 (2002).
- 10. A.B. Hallak, Radiat. Phys. Chem., 60, 17 (2001).
- 11. I. Han, L. Demir and M. Agbaba, Radiat. Phys. Chem., 76, 1551 (2007).
- 12. S. Puri and N. Singh, Radiat. Phys. Chem., 75, 2232 (2006).
- 13. A. Kaya, M. Ertugrul, O. Dogan, O. Sogut, U. Turgut and O. Simsek, *Anal. Chim. Acta*, **441**, 317 (2001).
- 14. E. Oz, N. Ekinci, M. Ertugrul and Y. Sahin, X-Ray Spectrometry, 32, 153 (2003).
- 15. E. Oz, Y. Sahin and M. Ertugrul, Radiation Phys. Chem., 69, 17 (2004).
- R. Yilmaz, E. Oz, M. Tan, R. Durak, A.I. Demirel and Y. Sahin, *Radiation Phys. Chem.*, 78, 318 (2009).
- 17. J.H. Scofield, Lawrence Livermore Laboratory Report, California (1973).
- 18. M.O. Krause, J. Phys. Chem. Ref. Data, 8, 307 (1979).
- 19. J.H. Scofield, Atom. Data Nucl. Data Tables, 14, 121 (1974).

(Received: 16 October 2009; Accepted: 26 March 2010) AJC-8574