Asian Journal of Chemistry

Vol. 22, No. 7 (2010), 5289-5296

Synthesis of 2-N-Salicylidene-5-(substituted)-1,3,4-thiadiazole as Potential Antimicrobial Agents

JUMAT SALIMON*, NADIA SALIH[†], HANAN IBRAHEEM[†] and Emad Yousif[†]

School of Chemical Sciences & Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Fax: (60)(3)89215410; Tel: (60)(3)89215412; E-mail: jumat@ukm.my

Several new 2,5-disubstituted derivatives of 1,3,4-thiadiazoles containing imine moiety were obtained from cyclization of thiosemicarbazide and corresponding *p*-substituted carboxylic acid in phosphorus oxychloride then the resulted products were reacted with salicylaldehyde to give the final products **3a-h**. All the newly synthesized compounds were charac-terized using FTIR, ¹H NMR, ¹³C NMR and elemental analysis. All compounds have been screened for their antimicrobial activity and showed that the introduction of 1,3,4-thiadiazole ring significantly increase the antibacterial activity.

Key Words: 1,3,4-Thiadiazole ring, Antimicrobial activity, Imine moiety.

INTRODUCTION

The synthesis of compounds incorporating both 1,3,4-thiadiazole ring and imine moiety have attracted widespread attention due to their diverse pharmacological properties such as antimicrobial, antiinfammatory, analgesic and antitumoral activities¹⁻⁷. Although there are a number of antibiotics which are commercially used in medicine. The synthesis of new compounds is of vital importance due to increasing drug resistance. Moreover, it is important to obtain therapeutically compounds having less toxic effects. 1,3,4-Thiadiazoles attracted the great attention after the discovery of sulfa drugs and their potent representative bearing this heterocyclic ring. Several 1,3,4-thiadiazoles have been found biologically active, *e.g.*, they showed the anticancer and antiviral activity^{8,9}, antiinflammatory¹⁰, carbonic-anhydrase inhibitory¹¹, anticonvulsant¹², H-2-antagonist¹³, antibacterial¹⁴ and fungicidal¹⁵ activity.

Schiff bases-bimolecular condensation products of primary amines with aldehydesrepresent valuable intermediates in organic synthesis and, at the same time, compounds with various applications. Schiff bases resulted from aromatic aldehydes *ortho*substituted with a hydroxyl group have initially arouse the researchers' interest because of their wide biological activity range. Later, in studies^{16,17} concerning quantitative structure-antitumor activity relationship of a series of Schiff bases derived from variously substituted aromatic amines and aldehydes, it has been shown that

[†]Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.

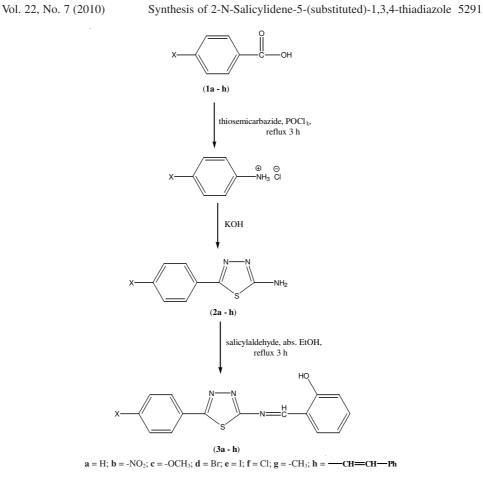
Asian J. Chem.

azomethines from salicylaldehydes gave the best correlation. Schiff bases of salicylaldehydes have also been reported as plant growth regulators¹⁸ and antimicrobial¹⁹ or antimycotic²⁰ activity. This paper presents a series of new Schiff bases with a potential biological activity resulted from condensation of salicylaldehyde with 2-amino-5-substituted-1,3,4-thiadiazole. These novel compounds could also act as valuable ligands whose biological activity has been shown to increase on complexation²¹.

EXPERIMENTAL

The chemicals used in this work were obtained from Aldrich Chemicals Company and they were all pure grade reagents.

General procedure for the synthesis of 2-amino-5-substituted-1,3,4-thiadiazole (2a-h): Mixture of appropriate carboxylic acid (0.01 mol), thiosemicarbazide (0.01 mol), phosphorus oxychloride (5 mL) was refluxed gently for 3 h. After cooling, water was added (50 mL). The mixture was refluxed for 4 h and filtered. The filtrate was neutralized with potassium hydroxide. The precipitate was filtered and washed with distilled water and crystallized from (ethanol-water) to give the desired products.


General procedure for the synthesis of 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole (3a-h): The resulted amino thiadiazole (0.01 mol) **2a-h** was refluxed for 3 h with (0.01 mol) salicyladehyde, the yellow precipitate which formed was filtered and crystallized from ethanol to give the final Schiff base products.

Detection methods: The percentage composition of the elements (CHN) for the compounds was determined using an elemental analyzer CHNS Model Fison EA 1108. The infrared spectra were recorded as potassium bromide discs using a Perkin-Elmer spectrophotometer GX. The ¹H and ¹³C nuclear magnetic resonance spectra were recorded using the JEOL JNM-ECP 400 spectrometer.

RESULTS AND DISCUSSION

Synthesis and physical properties: 2-Amino-5-substituted-1,3,4-thiadiazole **2a-h** being the starting materials were prepared from the reaction of different substituted aromatic carboxylic acids **1a-h** with thiosemicarbazide in phosphorus oxychloride then neutralization with potassium hydroxide. The 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole **3a-h** were formed through the reaction of compounds **2a-h** with salicylaldehyde in absolute ethanol. The structures of all the compounds were supported by spectral and analytical data. The strategy employed in the synthesis of the titled compounds is as follows (**Scheme-I**).

The purity of the synthesized compounds were checked by TLC using silica gel-G as adsorbent. Further evidence for the characterization of the synthesized compounds was obtained from C, H, N and S analysis, which are in agreement with the calculated values (Table-1).

Scheme-I: Protocol for synthesis of the title compounds (3a-h)

Infrared spectroscopy: Solid state infrared spectra of the synthesized compounds are recorded in the range 4000-700 cm⁻¹ and the most important bands are presented in Table-2. In the IR spectra of the compounds **2a-h**, the aromatic C-H stretching absorptions appeared in the region 3100-3010 cm⁻¹. On the other hand, the strong absorption band at 1254-1240 cm⁻¹ due to the stretching vibration of thiosemicarbazide C=S group was disappeared in the IR spectra of these compounds. However, a strong absorption band at about 3350-3300 cm⁻¹ was observed in each case due to the -NH₂ stretching vibrations, this band was disappeared in the IR spectra of compounds **3a-h**. Furthermore, the band at 3450-3400 cm⁻¹ together with the bands at 1620-1600 cm⁻¹ due to O-H and C=N stretching vibrations, respectively, are another important characteristic evidences for the proposed structures of the compounds **3a-h**.

NMR spectroscopy: The ¹H NMR spectra for all compounds were recorded in DMSO- d_6 using TMS as the internal standard (Table-3). The conclusions drawn from the data give a further support to suggested structures for the synthesized

Asian J. Chem.

				Found (calcd.) (%)				
Comp.	Yield (%)		m.f	С	H	N	S	
				53.12	4.32	22.89	19.42	
2a	85	110-111	$C_8H_7N_3S$	(54.22)	(3.98)	(23.71)	(18.09)	
				42.65	3.01	26.53	13.76	
2b	83	78-79	$C_8H_6N_4O_2S$	(43.24)	(2.72)	(25.21)	(14.43)	
				53.32	3.84	21.41	16.28	
2c	73	135-136	$C_9H_9N_3OS$	(52.16)	(4.38)	(20.27)	(15.47)	
• •		156 157	C H N CD	36.87	3.02	15.63	11.76	
2d	75	156-157	$C_8H_6N_3SBr$	(37.52)	(2.36)	(16.41)	(12.52)	
2e	77	02.02	CUNC	30.98	3.10	14.03	11.21	
Ze	//	92-93	$C_8H_6N_3SI$	(31.70)	(2.00)	(13.86)	(10.58)	
2f	81	213-214	C ₈ H ₆ N ₃ SCl	44.67	2.42	20.13	16.42	
21	01	213-214	C ₈ H ₆ N ₃ SCI	(45.39)	(2.86)	(19.85)	(15.15)	
2g	79	187-188	CHNS	55.76	3.98	22.39	15.69	
4 8	1)	107-100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(16.77)				
2h	70	106-107	$C_{16}H_{13}N_{3}S$	67.94	5.10	14.87	10.85	
211	70	100-107		(68.79)	(4.69)	(15.04)	(11.48)	
3a	72	152-153	$C_{15}H_{11}N_{3}OS$	65.90	2.85	13.68	10.97	
Ju	12	152 155		(64.04)	(3.94)	(14.94)	(11.40)	
3b	79	115 d*	$C_{15}H_{10}N_4O_3S$	54.37	2.73	16.91	10.02	
0.0	17	115 u	C15111014030	(55.21)	(3.09)	(17.17)	(9.83)	
3c	75	182-183	$C_{16}H_{13}N_{3}O_{2}S$	62.34	3.98	14.12	11.12	
	10	102 105	$C_{16}\Pi_{13}\Pi_{3}O_{2}S$	(61.72)	(4.21)	(13.50)	(10.30)	
3d	73	144-145	C ₁₅ H ₁₀ N ₃ OSBr	51.64	3.03	10.97	9.21	
		111 110	C1511101 (300D)	(50.01)	(2.80)	(11.66)	(8.90)	
3e	85	167-168	$C_{15}H_{10}N_3OSI$	43.56	2.13	11.15	6.39	
			15 10 5 1	(44.24)	(2.48)	(10.32)	(7.87)	
3f	70	189-190	C ₁₅ H ₁₀ N ₃ OSCl	57.89	2.74	12.58	9.47	
			C1511101 130501	(57.05)	(3.19)	(13.31)	(10.15)	
3g	88	202-203	$C_{16}H_{13}N_3OS$	64.53	3.87	13.45	11.68	
0				(65.06)	(4.44)	(14.23)	(10.86)	
3h	89	122-123	C ₂₃ H ₁₇ N ₃ OS	73.15	5.11	11.32	9.40	
*ud – daaamma			- 25175 - 5	(72.04)	(4.47)	(10.96)	(8.36)	

TABLE-1 YIELD AND PHYSICAL DATA OF ALL COMPOUNDS PREPARED

*:d = decomposed.

compounds. The ¹H NMR spectra of 2-amino-5-substituted-1,3,4-thiadiazole **2a-h** showed a multiple signals at 7.32-7.90 ppm and a singlet signal at about 9.14 ppm assignable for aromatic ring protons and $-NH_2$ group protons, respectively, the last one was further characterized by D₂O exchange²². On the other hand, ¹H NMR spectra for 2-N-salicylidene-5-(substituted)-1,3,4-thiadiazole **3a-h** showed singlet signal at about 7.35 ppm due to -N=CH- protons together with a multiple signals at 8.25-9.10 ppm attributable to aromatic protons²³. Furthermore, the O-H proton signals appeared at 9.67-9.93 ppm and were further characterized by D₂O exchange.

Vol. 22, No. 7 (2010)

	IINFKAK	ED SPEC	IRAL (cr	II) DATA	OF ALL	COMPO	UNDS PF	KEPAKE	U
Comp.	ν(O-H)	v(NH ₂)	v(C-H) aromatic	v(C-H) aliphatic	v(C=N)	v(C=C)	$v(NO_2)$	v(C-S)	γ(C-H) aromatic
2a	_	3342, 3310	3022	_	1576	1518	_	657	745, 663
2b	_	3367, 3324	3087	_	1574	1512	1543, 1367	645	832
2c	_	3345, 3315	3025	2987, 2854	1556	1510	_	648	830
2d	-	3356, 3321	3040	-	1573	1522	_	650	833
2e	-	3346, 3332	3067	-	1565	1521	_	645	835
2f	-	3336, 3314	3010	-	1545	1520	_	634	838
2g	-	3337, 3312	3075	2978, 2865	1556	1518	_	637	840
2h	-	3358, 3234	3090	-	1585	1513	_	648	842
3 a	3450	_	3059	-	1610, 1580	1517	_	650	845
3b	3478	_	3083	-	1612, 1576	1512	_	640	830
3c	3467	_	3042	2949, 2865	1610, 1558	1515	_	638	835
3d	3458	_	3067	_	1609, 1575	1520	_	637	834
3e	3493	_	3079	_	1613, 1570	1523	_	638	845
3f	3478	_	3037	_	1612, 1551	1516	_	635	844
3g	3456	_	3068	2958, 2873	1613, 1558	1518	_	643	836
3h	3468	-	3089	-	1610, 1588	1517	-	646	835

 TABLE-2

 INFRARED SPECTRAL (cm⁻¹) DATA OF ALL COMPOUNDS PREPARED

Table-4 shows the most relevant ¹³C NMR data. Due to scant solubility of the synthesized compounds, their spectra were recorded in DMSO- d_6 . The two thiadiazole carbons appeared at about 87.65 and 90.78 ppm while the signals attributed to aromatic carbons appeared at about 125.46-132.57 ppm for compounds **2a-h** and **3a-h**. The signal at 110.85-112.63 ppm was due to -N=CH- group of compounds **3a-h**²⁴.

Antimicrobial activity: All the synthesized compounds 2a-h and 3a-h were screened for their antibacterial activity against *S. aureus*, *S. typhi* and *E. coli* (Table-5) by the drug diffusion method²⁵. The inhibition zone was measured in mm and was compared with standard drug. DMSO was used as control and Streptomycin

Asian J. Chem.

 $TABLE\text{-}3 \\ ^{1}\text{H-NMR DATA} (\delta, ppm) \text{ OF COMPOUNDS (2a-h; 3a-h) PREPARED} \\$

Comp.	-C <u>H</u> ₃	-OC <u>H</u> ₃	-C <u>H</u> =C <u>H</u> -	-N=C <u>H</u> -	Aromaticprotons	-NH ₂	O-H
2a	_	_	_	_	7.30-7.89	9.15	_
2b	-	-	_	_	7.33-7.90	9.14	-
2c	-	2.39	_	_	7.32-7.76	9.13	-
2d	-	-	_	_	7.30-7.86	9.12	-
2e	-	-	-	-	7.32-7.91	9.13	-
2f	-	-	_	-	7.33-7.90	9.14	-
2g	1.23	-	-	-	7.32-7.91	9.15	-
2h	-	-	5.43	-	7.31-7.87	9.13	-
3a	-	-	-	7.34	8.25-9.03	-	9.67
3b	-	-	-	7.38	8.23-9.05	-	9.90
3c	_	2.67	_	7.35	8.25-9.11	_	9.91
3d	_	-	_	7.37	8.24-9.10	_	9.92
3e	-	-	-	7.32	8.25-9.10	-	9.67
3f	-	-	-	7.36	8.23-9.11	-	9.68
3g	1.45	-	-	7.34	8.25-9.12	-	9.90
3h	_	_	5.26	7.35	8.24-9.10	_	9.93

TABLE-4

¹³C-NMR DATA (δ, ppm) OF COMPOUNDS (**2a-h**; **3a-h**) PREPARED

Comp.	$-\underline{C}H_3$	$-O\underline{C}H_3$	- <u>C</u> H= <u>C</u> H-	-N= <u>C</u> H-	Thiadiazole carbons	Aromatic carbons
2a	_	_	-	_	87.74, 90.80	126.48-133.15
2b	_	-	-	-	87.63, 90.75	125.46-132.57
2c	_	16.18	_	_	87.64, 90.79	125.71-132.34
2d	_	_	_	_	87.65, 90.78	126.32-133.62
2e	_	_	_	_	87.70, 90.80	125.53-132.70
2f	_	_	_	_	87.63, 90.75	124.63-132.89
2g	13.24	_	_	_	87.64, 90.78	125.61-132.57
2h	_	_	66.32	_	87.66, 90.77	125.34-132.80
3a	-	-	-	110.86	87.67, 90.74	125.50-132.63
3b	-	-	-	111.12	87.70, 90.79	125.43-132.54
3c	-	16.83	_	112.67	87.67, 90.77	125.55-132.53
3d	_	_	_	110.85	87.68, 90.80	125.50-132.62
3e	_	_	_	111.49	87.64, 90.79	125.47-132.55
3f	_	_	_	112.34	87.63, 90.76	125.51-132.60
3g	13.56	_	_	110.56	87.66, 90.78	125.45-132.52
3h	-	-	67.41	111.63	87.64, 90. 80	125.43-132.55

was used as antibacterial standard. All the compounds were tested at 100 and 250 μ g/mL concentration. From the antimicrobial screening of the compounds it could observed that the introduction of 1,3,4-thiadiazole show a significant increase in antibacterial activity, also compounds **3a-h** show good antibacterial activity.

Vol. 22, No. 7 (2010)

	Zone of inhibition (mm)								
Comp.	S. a	ureus	S. ty	vphi	E. coli				
	100 µg	200 µg	100 µg	200 µg	100 µg	200 µg			
2a	_	+	+	++	++	++			
2b	_	++	+	++	++	++			
2c	_	++	_	+	_	+			
2d	_	+	+	++	++	++			
2e	++	++	++	+++	++	+++			
2f	+++	+++	+++	+++	+++	+++			
2g	+	++	++	+++	+++	+++			
2h	++	+++	++	+++	+++	+++			
3a	+	++	++	++	++	+++			
3b	+++	+++	+++	+++	+++	+++			
3c	+++	+++	+++	+++	+++	+++			
3d	++	++	++	+++	++	+++			
3e	+++	++	+++	++	+++	+++			
3f	+++	+++	+++	+++	+++	+++			
3g	+++	+++	+++	+++	+++	+++			
3h	+++	++	+	++	+	++			
Disc size: 6.35 mm		Standard: Streptomycin		Control: DMSO					
Duration: 24 h		Resistant (11	l mm/less)	Intermediate (12-14 mm)					
Sancitiva (1)	5 mm/more)								

TABLE-5 ANTIBACTERIAL ACTIVITY OF ALL COMPOUNDS PREPARED

Sensitive (15 mm/more)

+++: high activity, ++: moderate activity, +: low activity, -: no activity.

Conclusion

From the present study, it can be concluded that the newly synthesized compounds have a significant antimicrobial activity against the tested microorganisms. The results also indicate that chlorosubstituted compounds **2f** and **3f** in position 6 of the benzene ring was essential for the activity and they are exhibit a growth inhibitory activity. From these observations and with slight modification in the structure one can plan for the drug design.

ACKNOWLEDGEMENTS

The authors are acknowledge to Universiti Kebangsaan Malaysia for Research funding # UKM-GUP-NBT-08-27-113 and UKM-OUP-NBT-28-145/2009 and to the supporting staffs from School of Chemical Sciences and Food Technology that has contributed in this study.

REFERENCES

- 1. L.F. Awad and S.H. El Ashry, *Carbohydrate Res.*, **312**, 9 (1998).
- 2. M. Amir and K. Shikha, Eur. J. Med. Chem., 39, 535 (2004).
- 3. E. Palaska, G. Sahin, P. Kelicen, N.T. Durlu and G. Altmok, IL Farmaco, 57, 101 (2002).

- 4. B.S. Holla, K.N. Poorjary, B.S. Rao and M.K. Shivananda, Eur. J. Med. Chem., 37, 511 (2002).
- 5. J.P. Henichart, R. Houssin and J.L. Berier, J. Heterocycl. Chem., 23, 1531 (1986).
- 6. A. Varvarasou, T.S. Papastaikoudi, A.T. Kakoulidou and A. Vamvakides, IL Farmaco, 53, 320 (1998).
- 7. N. Demirbas, S.A. Karaoglu, A. Demirbas and K. Sancak, Eur. J. Med. Chem., 39, 793 (2004).
- 8. F.P. Invidiata, S. Grimaudo, P. Giammanco and L. Giammanco, IL Farmaco, 46, 1489 (1991).
- 9. O.G. Todoulou, A.P. Valiraki, E.C. Filippatos, S. Ikeda and E. De Clercq, *Eur. J. Med. Chem.*, **29**, 127 (1994).
- 10. S.N. Sawhney and P.K. Sharma, Bioorg. Med. Chem. Lett., 3, 1551 (1993).
- 11. N.C. Wu, C.H. Chiang and A.R. Lee, J. Ocul. Pharmacol., 9, 97 (1993).
- 12. K. Srivastava and S.N. Pandey, Bioorg. Med. Chem. Lett., 3, 547 (1993).
- 13. G. Sorba, A. Di Stilo, A.M. Gasco, M. Gili, A. Gasco and M. Orsetti, IL Farmaco, 47, 1445 (1992).
- 14. S.N. Pandeya, D. Sriram, G. Nath and E. de Clercq, Arzneim. Forsch. Drug Res., 50, 55 (2000).
- 15. B.S. Holla, K.N. Poojary, B. Kalluraya and P.V. Gowda, IL Farmaco, 51, 793 (1996).
- 16. E.M. Hodnett and W.J. Dunn, J. Med. Chem., 13, 768 (1970).
- 17. E.M. Hodnett and P.D. Mooney, J. Med. Chem., 13, 786 (1970).
- 18. G.H. Alt (Monsanto Co.), US 4,226,615 (1980); Chem. Abstr., 94, 26155 (1981).
- Y. Hamada, I. Takeuchi, Y. Ita, S. Matsui and T. Ita, *Yakugaku Zasslzi*, **101**, 633 (1981); *Chem. Abstr.*, **95**, 181559 (1981).
- 20. M. Ismail, Indian J. Pharm. Sci., 4S, 121 (1986); Chem. Abstr., 107, 175589 (1987).
- 21. Z.H. Chohan and S. Kausar, Chem. Pharm. Bull., 40, 2555 (1992).
- R. Sliverstien, G. Bassler and T. Morrill, Spectrometric Identification of Organic Compounds, John-Wiley, New York, edn. 7 (2005).
- 23. J. Salimon, N. Salih, H. Hussien and E. Yousif, Eur. J. Sci. Res., 31, 256 (2009).
- 24. D.A. Ibrahim, Eur. J. Med. Chem., 44, 2776 (2009).
- 25. S. Frankle, S. Reitman and A.C. Sonnenwir, Gradwol's Clinical Laboratory Method and Diagnosis, (C.V. Mosby Co., Germany), edn. 7, vol. 2, p. 1406 (1970).

(Received: 13 August 2009; Accepted: 22 March 2010) AJC-8552