Asian Journal of Chemistry

Vol. 22, No. 7 (2010), 5237-5243

Ab initio and DFT Studies on Tautomerization of Nitrosamine in Reaction of the Nitrosamine Isomers-H₂O₂

SADEGHALI BAVAFA

Department of Chemistry, Faculty of Science, Payam Nour University, Ardakan, Iran E-mail: s.ali.bavafa@gmail.com

Ab initio molecular orbital and DFT calculations have been carried out for tautomerization, 2 imino tautomers and 1 zwitter ionic to amino (most stable species of the nitrosamine isomers) in reaction of HNNOH- H_2O_2 in order to elucidate the structures and energetics. The structures and transition states were optimized using B3LYP and MP2 methods with 6-311++G(2d,2p), AUG-cc-pVDZ basis sets. The transition states of the three transformation reactions found in the study possess 3 proton-transfer processes. Energetics and thermodynamic properties of all tautomerization of nitrosamine in reaction of the nitrosamine isomers - H_2O_2 have been obtained.

Key Words: Tautomerization, Nitrosamine, H₂O₂, Proton-transfer.

INTRODUCTION

Oxidation in biological systems can damage biomolecules including nucleic acid and protein. Hydrogen peroxide (H_2O_2) generating highly reactive radicals has been proven to play a role in the oxidation reactions¹ Significant quantities of H_2O_2 can be detected as a byproduct of several metabolic pathways in human blood².

The H_2O_2 complexes which are important in many chemical and biochemical systems have been investigated by different research groups. The interactions of hydrogen peroxide with $O_3^{3,4}$, dimethyl ether⁵, 1,3-butanediol⁶, glycine⁷, formamide⁸, uracil⁹, water¹⁰, hydrogen halides¹¹, urea¹² and nitrosamine¹³ were studied.

Tautomers are isomers of organic compounds that readily interconvert by a chemical reaction called tautomerization. Commonly this reaction results in the formal migration of a hydrogen atom or proton, accompanied by a switch of a single bond and adjacent double bond, nitrosamine has tautomer structure. Because NH₂NO contains N=O as well as NH₂ groups, it is expected to form a strong binary H-bonded complex with compounds such as H₂O₂ which is not only a proton donor but also a proton acceptor. To the best of our knowledge, interaction between NH₂NO and H₂O₂ as well as nature of interactions in NH₂NO-H₂O₂ complexes has not been experimentally investigated. But the theory has been studied¹³. Tautomerization of nitrosamine study has not been when a H₂O₂ with NH₂NO do complex formation.

5238 Bavafa

Asian J. Chem.

COMPUTATIONAL DETAILS

The geometries of the complexes and transition-states were optimized using B3LYP and MP2 methods with 6-311++G(2d,2p) and AUG-cc-pVDZ basis sets by Gaussian-03 program package¹⁴.

The thermal and corresponding zero-point vibrational energies calculations were performed for all optimized species at aforementioned levels to evaluate. Vibrational frequencies (from the analytic Hessian) were calculated to ensure that each minimum is a true local minimum (containing only positive frequencies) and that each transition state has only a single imaginary frequency (one negative eigenvalue of the Hessian).

The Mulliken electronegativity (χ), chemical hardness (η) and electronic chemical potential (μ) for all isomers of the nitrosamines were computed using orbital energies of the highest occupied molecular orbital (HOMO) and the lowes unoccupied molecular orbital (LUMO) at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels of theory. The chemical hardness, electronic chemical potential and Mulliken electronegativity were derived from the first ionization potential (I) and electron affinity (A) of the N-electron molecular system with a total energy (E) and external potential [$v(\vec{r})$] using the relations:

$$\chi = -\left(\frac{\partial E}{\partial N}\right)_{\nu(\vec{r})} = -\mu \cong \frac{1}{2}(I+A) \text{ and } \eta = -\left(\frac{\partial E}{\partial N^2}\right)_{\nu(\vec{r})} \cong \frac{1}{2}(I-A)$$

and the first ionization potential and electron affinity are I = E(N - 1) - E(N) and $A = E(N) - E(N + 1)^{15}$. According to the Koopmans theorem¹⁶, I and A were computed from the HOMO and LUMOenergies using the relations: $I = -E_{HOMO}$ and $A = -E_{LUMO}$.

The standard enthalpy ΔH_{298} and Gibbs free energy changes ΔG_{298} of interconversion reactions have been derived from the frequency calculations.

RESULTS AND DISCUSSION

Isomer and transition-state structures: The HNNOH nitrosamine isomers can be classified into two types namely imino (type i) and zwitter ionic (type z) isomers that reaction with H_2O_2 . Nitrosamine tautomers in trace interconversions (proton transfer) convert to amino (most stable species of the nitrosamine isomers). Supplementary data, are categorized into three groups, Fig. 1 for group 1 (imino- H_2O_2): HPi₁, HPi₂, Fig. 2 for group 2 (zwitter ionic- H_2O_2): HPz and Fig. 3 for group 3 (transition-states): TS-HPi₁-HPa₁, TS-HPi₂-HPa₂, TS-HPz-HPa₃: these structures computed at the MP2/AUG-cc-pVDZ level of theory.

The few stable isomer of the nitrosamine- H_2O_2 is a Hi₁ which is able to convert to HPa₁ (most stable), HPi₁ *via* the transition-state TS-HPi₁-HPa₁. The structures of HPi₁, HPa₁ and transition states of their interconversion are in the MP2/AUG-ccpVDZ-optimized geometrical parameters are shown in Fig. 1. The Ha₂ and Ha₃ complexes are the most stable complexes of the groups 2 and 3, respectively.

Studies on Tautomerization of Nitrosamine 5239

Vol. 22, No. 7 (2010)

Fig. 1. Structures of imino-H₂O₂ group 1

Fig. 2. Structures of zwitter ionic- H_2O_2 group 2

Fig. 3. Structures of transition-states group 3

5240 Bavafa

Energetics, thermodynamic properties: The electronic binding energies with BSSE, thermal and zero-point corrected energies for different complexes at several levels of theory are given in Table-1.

TABLE-1
BINDING ENERGIES (kcal/mol) FOR ISOMERS OF THE NITROSAMINE-H2O

							2 2
Complex	Method	Basis set	BSSE	De	D_e^{BSSE}	D_0	D_0^{BSSE}
HPi ₁	D2I VD	6-311++G(2d,2p)	0.40	-5.91	-5.52	-4.31	-3.91
	DJLIF	AUG-cc-pVDZ	0.29	-5.72	-5.43	-4.14	-3.85
	MD2	6-311++G(2d,2p)	1.49	-7.63	-6.14	-6.00	-4.51
	IVIF Z	AUG-cc-pVDZ	1.66	-7.88	-6.22	-6.25	-4.59
		6-311++G(2d,2p)	1.26	-5.29	-4.03	-3.76	-2.50
LID:	BOLIP	AUG-cc-pVDZ	0.46	-5.44	-4.98	-3.85	-3.40
HPl_2	MD2	6-311++G(2d,2p)	1.65	-6.34	-4.68	-4.73	-3.08
	MP2	AUG-cc-pVDZ	2.22	-6.99	-4.76	-5.28	-3.05
	D2I VD	6-311++G(2d,2p)	0.68	-7.61	-6.93	-6.12	-5.44
LID_{σ}	DOLIF	AUG-cc-pVDZ	0.65	-7.14	-6.49	-5.60	-4.95
HFZ	MD2	6-311++G(2d,2p)	1.78	-8.69	-6.92	-6.88	-5.10
	NIF2	AUG-cc-pVDZ	1.95	-9.03	-7.08	-7.23	-5.28
	B3LYP	6-311++G(2d,2p)	0.43	-7.59	-7.16	-5.50	-5.07
HPa ₁		AUG-cc-pVDZ	0.57	-7.66	-7.09	-5.64	-5.07
	MP2	6-311++G(2d,2p)	1.65	-9.32	-7.67	-7.12	-5.47
		AUG-cc-pVDZ	1.87	-9.74	-7.87	-7.63	-5.76
UD-	B3LYP	6-311++G(2d,2p)	0.51	-7.55	-7.04	-5.97	-5.46
		AUG-cc-pVDZ	0.51	-7.48	-6.97	-5.50	-4.99
$\operatorname{IIF} a_2$	MD2	6-311++G(2d,2p)	1.68	-8.89	-7.21	-6.85	-5.17
	MP2	AUG-cc-pVDZ	1.97	-9.54	-7.57	-7.41	-5.45
HPa ₃	D2I VD	6-311++G(2d,2p)	0.64	-9.22	-8.58	-6.78	-6.14
	DOLIP	AUG-cc-pVDZ	0.52	-9.31	-8.79	-6.97	-6.45
	MP2	6-311++G(2d,2p)	2.01	-10.40	-8.39	-7.76	-5.75
		AUG-cc-pVDZ	2.23	-11.02	-8.79	-8.49	-6.26

 D_e^{BSSE} = Electronic binding energy (D_e) + BSSE, $D_0 = D_e + \Delta ZPE$, $D_0^{BSSE} = D_0 + BSSE$.

Basis set superposition errors $(BSSE)^{17}$ introduce a significant correction in the calculation of energies and have been considered in most recent studies. From Table-1, the relative stabilities of all isomers of the nitrosamine dimers based on their D_0^{BSSE} are in decreasing order: $HPa_3 > HPa_1 > HPa_2 > HPz > HPi_1 > HPi_2$. The amines complexes are the most stable complexes.

The relative thermodynamic properties (activation energies, activation free energies, reaction enthalpies, reaction free energies) of all transition-states of their interconversions, computed at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels of theory are shown in Table-2.

The activation energies of the reactions are in the increasing order: $HPi_2 \rightarrow$ $HPa_2 < HPi_1 \rightarrow HPa_1 < HPz \rightarrow HPa_3$. Activation energy di-proton transfer less than monoproton transfer, in the middle of monoproton transfer H from O to N energy less than H from N1-N2. This may be explained within the principle of the minimal Vol. 22, No. 7 (2010)

AND MP2/AUG-cc-pVDZ LEVELS OF THEORY							
Reactions							
B3LYP/AUG-cc-pVDZ	$\Delta \mathrm{E}^{\ddagger}$	$\Delta \mathrm{H}^{\ddagger}$	ΔG^{\ddagger}	ΔE^{o}	ΔH°	ΔG^{o}	
TS-HPi ₁ -HPa ₁	21.38	21.38	21.30	1.63	1.63	1.34	
TS-HPi2-HPa2	8.13	8.13	10.84	2.03	2.03	1.90	
TS-HPz-HPa ₃	50.24	50.24	50.06	1.37	1.37	0.65	
MP2/AUG-cc-pVDZ							
TS-HPi ₁ -HPa ₁	28.89	28.89	29.09	1.71	1.71	0.84	
TS-HPi ₂ -HPa ₂	9.55	9.55	12.16	2.41	2.41	1.49	
TS-HPz-HPa	50.52	50.52	50.43	1.68	1.68	0.58	

THERMODYNAMIC QUANTITIES, TRANSITION-STATES OF THE NITROSAMINE-H₂O₂, COMPUTED AT THE B3LYP/AUG-cc-pVDZ AND MP2/AUG-cc-pVDZ LEVELS OF THEORY

TABLE-2

proton affinity difference between donor and acceptor¹⁸. The effect of proton affinity difference between donor and acceptor on the proton transfer.

All the reactions were found to be the endothermic processes. The proton-transfer processes *via* TS-HPi₁-HPa₁, TS-HPi₂-HPa₂ and TS-HPz-HPa₃ occur between atoms O1, N2 and N1, O1, O2 and N1, N2, respectively. Based on the proton-transfer transition-states, the interconversions *via* transition-state structures of the nitrosamine isomers-H₂O₂ are able to be classified into two types namely (i) monoproton transfer, MPT and (ii) di-proton transfer, which imaginary frequencies of TS-HPi₁-HPa₁, TS-HPi₂-HPa₂, TS-HPz-HPa₃ corresponding transition-states are, respectively, 1838.4i, 1612.88i, 2033.61i (Table-3).

TABLE-3
TYPES OF TRANSITION-STATE STRUCTURES COMPUTED
AT THE MP2/AUG-cc-pVDZ LEVEL OF THEORY

Types of transition-state (TS)						
Mono-proton tra	ansfer TS ^{a,b}	Di-proton transfer TS ^{a,c}				
TS-HPi ₁ -HPa ₁	1838.4i	TS - HPi2- HPa2	1612.88i			
TS-HPz-HPa ₃	2033.6i	-	-			

a: Transition-state, imaginary frequency in cm⁻¹. b: Intramolecular proton transfer. c: Intermolecular proton transfer.

Frontier MO energies and chemical indices: The energies of the lowest unoccupied molecular orbital (LUMO), E_{LUMO} and the highest occupied molecular orbital (HOMO), E_{HOMO} at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels and frontier molecular orbital energy gap, $\Delta E_{HOMO-LUMO}$, chemical hardness, chemical potential and Mulliken electronegativity of all isomers of the nitrosamine isomers-H₂O₂ computed at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels are shown in Table-4.

The chemical hardness, electronic chemical potential and electronegativity are important tools to study the relative stabilities of different isomers of a molecular system. The chemical reactivities and electronegativity of all the isomers of the

5242 Bavafa

Asian J. Chem.

nitrosamine isomers $-H_2O_2$ based on their frontier molecular energy gaps are in decreasing order: $HPa_3 > HPa_1 > HPa_2 > HPz > HPi_2 > HPi_1$.

TABLE-4 E_{LUMO} AND E_{HOMO} ENERGIES AND FRONTIER MOLECULAR ORBITAL ENERGY GAP, ΔE_{HOMO-LUMO} OF ALL ISOMERS OF THE NITROSAMINE DIMERS COMPUTED AT THE B3LYP/AUG-cc-pVDZ AND MP2/AUG-cc-pVDZ LEVELS OF THEORY

	I ·		F F			-	
Complex	E _{HOMO} ^a	E _{LUMO} ^a	$\Delta E_{\text{HOMO-LUMO}}^{a}$	$\eta^{\rm a,b}$	$\mu^{a,c}$	$\chi^{a,d}$	ρ^{e}
B3LYP/AUG-cc-pVDZ							
HPi ₁	-7.94	-2.00	5.94	2.97	-4.97	4.97	2.20
HPi ₂	-7.90	-2.03	5.87	2.94	-4.97	4.97	1.46
HPz	-7.97	-2.20	5.77	2.88	-5.08	5.08	2.61
HPa ₁	-7.22	-2.00	5.23	2.61	-4.61	4.61	3.60
HPa ₂	-7.18	-1.92	5.26	2.63	-4.55	4.55	2.23
HPa ₃	-7.28	-2.06	5.22	2.61	-4.67	4.67	3.75
TS-HPi ₁ -HPa ₁	-8.22	-2.27	5.95	2.97	-5.24	5.24	2.66
TS-HPi ₂ -HPa ₂	-7.50	-2.24	5.26	2.63	-4.87	4.87	2.52
TS-HPz-HPa ₃	-7.91	-0.28	7.63	3.82	-4.09	4.09	3.05
MP2/AUG-cc-pVDZ							
HPi	-12.63	1.02	13.64	6.82	-5.81	5.81	2.21
HPi ₂	-12.62	0.94	13.56	6.78	-5.84	5.84	1.58
HPz	-11.58	1.04	12.63	6.31	-5.27	5.27	2.87
HPa ₁	-11.98	0.83	12.82	6.41	-5.57	5.57	3.57
HPa ₂	-11.94	0.88	12.82	6.41	-5.53	5.53	2.36
HPa ₃	-12.04	0.76	12.79	6.40	-5.64	5.64	3.72
TS-HPi ₁ -HPa ₁	-11.96	0.91	12.88	6.44	-5.53	5.53	2.82
TS-HPi ₂ -HPa ₂	-11.97	0.90	12.88	6.44	-5.53	5.53	2.64
TS-HPz-HPa ₃	-12.68	0.21	12.89	6.45	-6.23	6.23	3.30
	-						

a: In eV. b: chemical hardness, $\eta = \Delta E_{HOMO}$ -LUMO/2. c: electronic chemical potential, $\mu = (E_{HOMO} + E_{LUMO})/2$. d: The Mulliken electronegativity, $\chi = \Delta (E_{HOMO} + E_{LUMO})/2$. e: In debye.

As the acceptor strength is the inverse of the E_{LUMO} energy, the acceptor strength of the nitrosamine isomers at the B3LYP/AUG-cc-pVDZ level of theory is in the decreasing order: $HPz > HPa_3 > HPi_2 > HPi_1 > HPa_1 > HPa_2$. On the other hand, as the donor strength relatives to the E_{HOMO} energy, the donor strength is in the decreasing order: $HPz > HPi_1 > HPi_2 > HPa_3 > HPa_1 > HPa_2$. The relative reactivity based on their frontier molecular orbital energy gap is in the decreasing order: $HPa_3 > HPa_1 > HPa_2 > HPi_2 > HPi_1$.

The nitrosamine isomers- H_2O_2 computed at the B3LYP/AUG-cc-pVDZ and MP2/AUG-cc-pVDZ levels are shown in Table-4 that the Hi2 complex is the least polar molecule.

Conclusion

Ab initio molecular orbital and DFT calculations have been carried out for tautomerization, 2 imino tautomers and 1 zwitter ionic to amino (most stable species of the nitrosamine isomers) in reaction of HNNOH-H₂O₂. The structures and transition states were optimized using B3LYP and MP2 methods with 6-311++G(2d,2p), AUG-cc-pVDZ basis sets.

Vol. 22, No. 7 (2010)

The amines complexes are the more stable than imino and zwitter ionic complexes. The activation energies of the reactions are in the increasing order: $HPi_2 \rightarrow HPa_2 < HPi_1 \rightarrow HPa_1 < HPz \rightarrow HPa_3$. Activation energy di-proton transfer less than monoproton transfer, in the middle of monoproton transfer H from O to N energy less than H from N1 to N2. This may be explained within the principle of the minimal proton affinity difference between donor and acceptor¹⁸. The effect of proton affinity difference between donor and acceptor¹⁸. The effect of proton affinity difference between donor and acceptor transfer. The chemical reactivities and electronegativity of all isomers of the nitrosamine isomers-H₂O₂ based on their frontier molecular energy gaps are in decreasing order: HPa₃ > HPa₁ > HPa₂ > HPi₁.

The relative reactivity based on their frontier molecular orbital energy gap is in the decreasing order: $HPa_3 > HPa_1 > HPa_2 > HPz > HPi_2 > HPi_1$. The Hi2 complex is the least polar molecule.

REFERENCES

- 1. W.A. Glass and M.N. Varma, Eds. Physical and Chemical Mechanism in Molecular Radiation Biology; Plenum Press: New York (1991).
- 2. S.D. Varma and P.S. Devamanoharan, Free Radical Res. Commun., 14, 125 (1991).
- 3. B.N. Engdahl, Chem. Phys., 293, 203 (2003).
- 4. B. Makiabadi and H. Roohi, Chem. Phys. Lett., 460, 72 (2008).
- 5. J. Goebel, B. Ault and J. Del Bene, J. Phys. Chem. A, 104, 2033 (2000).
- 6. Z. Zhou, H. Zhang and Y. Shi, J. Phys. Chem. A, 108, 6520 (2004).
- 7. S.T. Tian, J. Phys. Chem. B, 108, 20388 (2004).
- 8. D. Due, A. Fu and Z. Zhou, J. Mol. Struct. (Theochem.), 731, 49 (2008).
- 9. R.W. Wysokinski, D. Michalska and D.C. Bienko, J. Phys. Chem. A, 107, 8730 (2003).
- 10. J.A. Dobado and J. Molina, J. Phys. Chem., 98, 1819 (1994).
- 11. J.A. Dobado and J. Molina, J. Phys. Chem., 98, 7819 (1994).
- 12. J.A. Dobado, J. Molina and D. Portal, J. Phys. Chem. A, 102, 778 (1998).
- 13. H. Roohi, A. Nowroozi, S. Bavafa, F. Akbary and F. Eshghi, *Int. J. Quantum Chem.*, **109**, (2009) (In press); DOI 10.1002/qua.22364.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian03, Revision B. 03; Gaussian, Inc.: Pittsburgh PA (2003).
- 15. J.R. Sabin, S.B. Trickey, S.P. Apell and J. Oddershede, Int. J. Quantum Chem., 77, 358 (2000).
- 16. T. Koopmans, *Physica*, **1**, 104 (1933).
- 17. S.F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1990).
- 18. S.J. Grabowski, Hydrogen Bonding-New Insights; Springer: Netherlands (2006).

(Received: 7 August 2009; Accepted: 20 March 2010) AJC-8543