Comparative Study of Acetylation of Alcohols and Phenols with Different Acetylating Agents Using Zinc Chloride as Catalyst Under Solvent Free Conditions at Room Temperature

PRAKRATI YADAV, REKHA LAGARKHA* and ZAHOOR AHMAD BALLA Department of Chemistry, Bundelkhand University, Jhansi-284 128, India E-mail: arekhag@yahoo.com

Efficient acetylation of 1°, 2° and 3°, benzylic alcohols and phenols under solvent free conditions at room temperature in presence of less toxic, easily available and in-expensive catalyst $ZnCl_2$, using acetic anhydride or acetyl chloride as an acetylating agent. On comparative study of these two acetylating agents, the acetyl chloride seemed to be better acetylating agent.

Key Words: Acetylation, Alcohols, Phenols.

INTRODUCTION

Acetylation of hydroxyl groups is an often used protection technique because of the case of formation as well as mild conditions for de-protection. Since the hydroxyl groups are present in a number of compounds of biological and synthetic interest, including nucleotides, carbohydrates, steroids and alkaloids *etc*. In general, acylation reactions take place by treatment of alcohols and phenols with hyper active acylating agents such as acetic anhydride or acid chlorides in the presence of tertiary amines such as triethyl amine and pyridine¹. In addition to this various types of catalysts have been used from time to time some of them are: 4-(dimethyl amino) pyridine (DMAP)², COCl₂³, Bu₃P⁴, triflates⁵⁻¹⁰, zeolites¹¹, TaCl₅¹², clays¹³, LiClO₄¹⁴, Mg(ClO₄)₂¹⁵, ionic liquids¹⁶, InCl₃¹⁷, ZrCl₄¹⁸, Cu(BF₄)₂·xH₂O¹⁹, RuCl₃²⁰, P₅O₅/SiO₂²¹, ZrOCl₂·8H₂O²², *p*-toluene sulphonic acid²³, 3-nitrobenzene boronic acid²⁴, alumina²⁵, *etc*.

However use of microwave irradiation technique²⁶ can also brought the acylation reactions. Very recently molecular iodine catalyzed acylation of alcohols has also been reported²⁷.

However, some of these methods are not entirely satisfactory. Triethyl amine and pyridine have unpleasent odours and are not so easy to remove. Tributyl phosphine is an irritant which is highly flammable and expensive and other suffer from low yields of products and long reaction times. Therefore, introduction of new methods and catalysts for the preparation of ester is still in demand.

For the same we choose zinc chloride as catalysts for the acetylation of alcohols and phenols under solvent free conditions using acetic anhydride or acetyl chloride as acylating agents (**Scheme-I**).

5156 Yadav et al.

Asian J. Chem.

 $\begin{array}{c} R'OH \xrightarrow{Ac_2O/CH_3COCl} R'OAc \\ \hline ZnCl_2, Solvent free \\ conditions (RT) \end{array}$

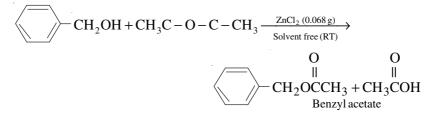
where R = aliphatic or aromatic

Scheme-I

EXPERIMENTAL

Melting and boiling points: All boiling and melting points were uncorrected and expressed in °C.

Thin layer chromatography: The thin layer chromatography (TLC) was performed using silica gel 60 F_{254} plates. The spots were made visible by exposing to iodine vapors. Silica gel (230-400 mesh) was used for column chromatography. ¹H NMR spectroscopic analysis was done by using TMS as an internal standard.


Drying agents: All organic extracts were dried over anhydrous sodium sulphate.

General procedure: To a mixture of $ZnCl_2$ (dry powder, 0.068 g, 0.5 mmol) and an acid or acid anhydride (1 mmol), alcohol or phenol (1 mmol) was added. The reaction mixture was stirred with magnetic stirrer for a certain period of time as required to complete the reaction (monitored by TLC). The solid mass of $ZnCl_2$ was then eluted with CH_2Cl_2 (20 mL) and the CH_2Cl_2 extract was then washed with an aqueous solution of sodium bicarbonate and dried over anhydrous sodium sulphate.

Evaporation of solvent furnished, practically pure, the corresponding product. The identity of these compounds was established by comparison of their melting and boiling points and ¹H NMR spectra with those of authentic samples **2**).

Preparation of benzyl acetate from acetic anhydride and benzyl alcohol (entry 6, Table-1): To a mixture of ZnCl₂ (dry powder, 0.068 g, 0.5 mmol) and acetic anhydride (1 mmol, 0.094 mL) add benzyl-alcohol (1 mmol, 0.103 mL). The reaction vessel/conical flask was then placed on magnetic stirrer for about 1.5 h, as required to complete the reaction (Monitored by TLC) at room temperature nearly 30 °C, under solvent free conditions.

The solid mass $(ZnCl_2)$ was then eluted with CH_2Cl_2 (20 mL) and the CH_2Cl_2 extract was then washed with aqueous solution of sodium bicarbonate and then dried over anhydrous sodium sulfate evaporation of the solvent furnished practically pure corresponding acetate-benzyl acetate.

Vol. 22, No. 7 (2010) Study of Acetylation of Alcohols & Phenols with Different Acetylating Agents 5157

In order to identify our product the boiling point and infrared spectra measured and was then compared to the authentic (actual) sample. The observed boiling point was very much comparable to that of actual.

RESULTS AND DISCUSSION

Using $ZnCl_2$ as a catalyst we have been successful in acylating the 20 or 30 alcohols. The results of various alcohols have been listed in the Table-1: The coresponding acetates are obtained in a handsome quantity both by the use of acetic

		TABLE-1		
Entry	Substrate	Acetylating reagent	Time (min)	Yield (%)
1	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	Ac ₂ O	120	62
	- 5- 2- 2- 2- 2-	CH ₃ COCl	90 90	68 63
2	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ COCl Ac ₂ O	90 55	60
	ОН	-		
3		Ac_2O	150	55
U	\sim	CH ₃ COCl	120	60
4	2-Butanol	CH ₃ COCl	180	53
5	CH ₃ CH ₂ CH ₂ OH	Ac_2O	80	62
5	$CH_3CH_2CH_2OH$	CH ₃ COCl	50	52
	ОН		200	15
6		Ac ₂ O CH ₃ COCl	300 180	65 63
			160	03
_		Ac_2O	300	58
7	t-Butanol	CH ₃ COCl	180	52
	∧ v0H	5		
8		Ac_2O	150	40
0		CH ₃ COCl	150	40
			• • • •	
9	Cyclo hexanol	Ac_2O	300	67
	OH			
10	$\wedge $		240	59
10	$\left[\bigcap \right] \left[\bigcap \right]$	Ac_2O	240	59
		Ac ₂ O	120	61
11	3-Pentanol	CH ₃ COCl	53	63
12	Isobutanol	Ac_2O	95	65
12	Isobutation	CH ₃ COCl	65	63
13	Isopentanol	Ac_2O	80	55
	· · I	CH ₃ COCl	55	51
14	Cyclopentanol	Ac ₂ O CH ₃ COCl	150 73	60 65
	Octanol	Ac_2O	120	61
15		CH ₃ COCl	75	63
16	2-Nitro phenol	Ac_2O	390	60
10		CH ₃ COCl	570	00

5158 Yadav et al.

Asian J. Chem.

anhydride as well as acetyl chloride. But in most of the cases acetyl chloride seemed to be better acylating agent as compared to acetic anhydride. Our catalyst was very much effective in bringing actylation of 20, 30 and also deactivated phenols. The main features of our catalyst is (i) low inexpensive (ii) less toxic, (iii) easily available.

Conclusion

We have presented a mild, simple and efficient protocol for the acetylation of alcohols and phenols under solvent free conditions at room temperature (30 °C). Reaction time of our procedure was very less. 20, 30 alcohols, sterically hundred or deactivated phenols were efficiently acetylated by our procedure. High yield and suppression of by product is reported. Use of inexpensive less toxic easily available catalyst (ZnCl₂) makes our procedure more economical.

REFERENCES

- 1. G. Strok, T. Takahashi and T. Suzuki, J. Am. Chem. Soc., 100, 8272 (1978).
- 2. G. Hofle, W. Steglich and H. Vorbrüggen, Angew. Chem. Int. Ed., 17, 569 (1978).
- 3. J. Iqbal and R.R. Srivastava, J. Org. Chem., 2001, 57 (1992).
- 4. E. Vedejs and S.T. Driver, J. Am. Chem. Soc. J. Org., 115, 3358 (1993).
- 5. K. Ishihara, M. Kubota, H. Kurihara and H. Yamamoto, J. Org. Chem., 61, 4560 (1996).
- 6. K. Ishihara, M. Kubota and H. Yamamoto, Synlett, 265 (1996).
- 7. P.A. Procopiou, S.P.D. Baugh, S.S. Flack and G.G.A. Inglis, J. Org. Chem., 63, 2342 (1998).
- 8. K.K. Chauhan, C.G. Frost, I. Love and D. Waite, *Synlett*, 1743 (1999).
- (a) A. Orita, C. Tanahashi, A. Kakuda and J. Otera, J. Org. Chem., 66, 8926 (2001); (b) M.D. Carrigan, D.A. Freiberg, R.C. Smith, H.M. Zerth and R.S. Mohan, Synthesis, 2091 (2001); (c) I. Mohammadpoor-Baltork, H. Aliyan, A.R. Khosropour, Tetrahedron, 57, 5851 (2001); (d) A.K. Chakraborti and R.G. Shivani, Synlett, 1805 (2003); (e) R. Dalpozzo, A. De Nino, L. Maiuolo, A. Procopio, M. Nardi, G. Bartol and R. Romeo, Tetrahedron Lett., 59, 5621 (2003); (f) B. Karimi and J. Maleki, J. Org. Chem., 68, 4951 (2003).
- 10. K.L. Chandra, P. Saravanan, R.K. Singh and V.K. Singh, Tetrahedron, 58, 1369 (2002).
- 11. S. Chandrasekhar, T. Ramachander and M. Takhi, *Tetrahedron Lett.*, **39**, 3263 (1998).
- 12. R. Ballini, G. Bosica, S. Carloni, L. Ciaralli, R. Maggi and G. Sartori, *Tetrahedron Lett.*, **39**, 6049 (1998).
- 13. P.M. Bhaskar and D. Loganathan, Tetrahedron Lett., 39, 2215 (1998).
- 14. Y. Nakae, I. Kusaki and T. Sato, Synlett, 1584 (2001).
- G. Bartoli, M. Bosco, R. Dalpozzo, E. Marcantoni, M. Massaccesi, S. Rinaldi and L. Sambri, Synlett, 39 (2003).
- 16. S.G. Lee and J.H. Park, J. Mol. Catal. A: Chem., 194, 49 (2003).
- 17. A.K. Chakraborti, R. Gulhane, Tetrahedron Lett., 44, 3521 (2003).
- 18. A.K. Chakraborti and R. Gulhane, Synlett, 627 (2004).
- 19. A.K. Chakraborti and R.G. Shivani, Synthesis, 111 (2004).
- 20. S.K. De, Tetrahedron Lett., 45, 2919 (2004).
- 21. H. Eshghi, P.J. Shafieyoon, Chem. Res. S, 802 (2004).
- 22. R. Ghosh, S. Maiti and A. Chakraborty, Tetrahedron Lett., 46, 147 (2005).
- 23. A.C. Cope and E.C. Herrick, Org. Synth. Coll., 4, 304 (1963).
- 24. R.H. Tale and R.N. Adude, Tetrahedron Lett., 47, 7263 (2006).
- 25. V.K. Yadav and K.G. Babu, J. Org. Chem., 69, 577 (2004).
- 26. P. Lidstrom, J. Tieney, B. Watney and J. Westman, Tetrahedron, 57, 9225 (2001).
- 27. P. Phukan, Tetrahedron Lett., 45, 4785 (2004).

(Received: 9 July 2009; Accepted: 20 March 2010) AJC-8530