Asian Journal of Chemistry

Vol. 22, No. 7 (2010), 5636-5648

Visible Light Photoelectrocatalytic Degradation of Methylene Blue by Platinum-Treated Carbon Nanotube/Titania Composites

FENG-JUN ZHANG[†], MING-LIANG CHEN and WON-CHUN OH^{*} Department of Advanced Materials & Science Engineering, Hanseo University, Seosan-si, Chungnam-356706, South Korea Tel:/Fax: (82)(41)6883352; E-mail: wc_oh@hanseo.ac.kr

Photoelectrocatalytic degradations of methylene blue in the presence of two types of carbon nanotube/titania and platinum-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis and photoelectrocatalytic activity. It was found that the photoelectrocatalytic degradation of a methylene blue solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of platinum and a function of the applied potential. The composites treated with platnium revealed enhanced photo degradation behaviours of the methylene blue.

Key Words: Platinum-carbon nanotuble/titania, Electrode, Photoelectrocatalytic, Methylene blue, Visible light.

INTRODUCTION

Although titanium dioxide (TiO₂) has been extensively employed as photocatalytic (PC) material for the successful removing of pollutants in both liquid and gas phases, especially for eliminating toxic chemicals from waste water. It can be excited only under illumination with UV light at wavelengths below 400 nm because of the large band gap (3.2 eV) for anatase TiO₂. Unfortunately, only *ca*. 4 % of the solar radiation that reaches the Earth's surface exists in the UV region; indeed, more than 45 % lies in the visible region¹. Therefore, the development of photocatalysts that can be excited by visible light has received much attention. Various efforts have been attempted to extend the light absorption of the photocatalysts to the visible region²⁻⁴.

Recently, porous carbon materials have been widely used in waste water treatment to remove various pollutants because of their large surface area and high adsorption capacity. Carbon/TiO₂ composites have attracted much attention and have become a very active field of research⁵⁻¹⁰. Carbon nanotubes (CNTs), as a new class of nanomaterials, have been drawn to considerable attention for their applications as

[†]School of Materials and Chemical Engineering, Anhui University of Architecture, Anhui, Hefei-230022, P.R. China.

Visible Light Photoelectrocatalytic Degradation of Methylene Blue 5637

catalyst supports¹¹⁻¹⁶ owing to their unique electrical properties, high chemical stability and high surface-to-volume ratio. Moreover, carbon nanotubes have a variety of electronic properties. They may also exhibit metallic conductivity as one of the many possible electronic structures. Carbon nanotubes have a large electron-storage capacity (one electron for every 32 carbon atoms)¹⁷, the ability of carbon nanotube can promote the electron-transfer reactions at carbon nanotubes modified electrodes.

CNT/TiO₂ composite systems are currently being considered for many applications including their potential use to address environmental problems. An *et al.*¹⁸ deposited anatase TiO_2 onto carbon nanotubes via hydrolysis of titanium isopropoxide in supercritical ethanol and studied the photocatalytic activity of these composites in terms of their ability to mediate the degradation of phenol under visible light. Wang et al.4,19 used a modified sol-gel method to prepare carbon nanotube/TiO₂ composites that exhibited photocatalytic activity under both UV and visible light. Jitianu and his co-workers²⁰ coated carbon nonotubes with anatase by using a sol-gel method and titanium alkoxides as precursors. Although these reports reveal that carbon nonotubes have a positive impact on the photocatalytic activity of TiO_2 under both UV and visible light, two problems that need to be addressed with nanosize photocatalysts is the difficulty in distributing single particles and collecting them after use. Support structures are needed. Embedding them into a matrix is a possible approach. Moreover, the photocatalytic activity of these composites remains low and must be improved if they are to be used for commercial applications, particularly under visible light.

The platinum nanoparticles are very effective as a matrix of enzyme sensors by taking advantage of the biocompatibility and huge surface of platinum nanoparticles and good electrocatalytic activity to hydrogen peroxide. Highly dispersed nanoscale platinum particles have been an intensive research subject as the electrocatalyst for methanol oxidation²¹. The electrocatalytic activity of platinum nanoparticles for this reaction is dependent on various factors, which involves the size and dispersion of the particles, preparation methods, supporting materials and their surface conditions. Carbon nonotubes are good supporting materials, which can support a high dispersion of platinum nanoparticles due to their large surface area and particular morphology. As TiO₂, CNT and Pt nanoparticles are excellent materials for the construction of catalyst, through a suitable combination of these materials, novel modified surfaces could be generated with higher surface area and enhanced catalytical/electrocatalytical activities, which is also expected to be an excellent platform for photoelectrocatalytic (PEC) applications.

In this study, we focused on the fabrication and characterization of the Pt-CNT/TiO₂ composite electrodes in a preparation procedure. Structural variations, surface state and elemental compositions were investigated for preparation of Pt-CNT/TiO₂ composite. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. The catalytic efficiency

Asian J. Chem.

of the Pt-CNT/TiO₂ electrode was evaluated by the photoelectrocatalytic degradation of methylene blue (MB, $C_{16}H_{18}N_3SCl\cdot 3H_2O$) under visible light.

EXPERIMENTAL

Carbon nanotubes (CNTs) were selected as the support material. The carbon nonotubes (multiwall nanotubes, diameter: *ca.* 20 nm, length: *ca.* 5 μ m), were supplied by carbon Nano-material Technology Co., Ltd., Korea and used without further purification. Titanium *n*-butoxide (TNB, Ti(OC₄H₇)₄) as a TiO₂ source for the preparation of Pt-CNT/TiO₂ composites were purchased from Acros Organics, New Jersey, USA. For the oxidization the surface of CNT, *m*-chloroperbenzoic acid (MCPBA)was used as an oxidized reagent which was purchased from Acros Organics, New Jersey, USA. Hydrogen hexachloroplatinate(IV) hydrate (H₂PtCl₆·6H₂O) was obtained from Kojima Chemical Co., Ltd. Reagents (benzene and ethylene glycol) were purchased as reagent-grade from Duksan Pure Chemical Co. and Daejung Chemical Co. and used without further purification. The novolac typed phenol resin was supplied by Kangnam Chemical Co., Ltd, Korea. The methylene blue was used as analytical grade which was purchased from Duksan Pure Chemical Co., Ltd, Korea. It was selected because under anaerobic conditions it has the potential to produce more hazardous aromatic amines.

Preparation of CNT/TiO₂ composite electrodes: To begin preparing this experiment, the oxidizing agent 2 g of *m*-chloroperbenzoic acid was mixed in 60 mL benzene. Then 0.6 g carbon nonotubes was put into the oxidizing agent, refluxed for 6 h, filtered and dried. The oxidized carbon nonotubes were put into the mixing solution of titanium *n*-butoxide and benzene with the volume ratio of 4:16. Then the solutions were homogenized under reflux at 343 K for 5 h using a magnetic stirrer in a vial. After being stirred, the solutions became CNT/TiO₂ gels and these gels were heat treated at 973 K for 1 h with a heating rate of 279 K/min. Then 0.4 g phenol resin was added to these CNT/TiO₂ composites and the composites were pressed at a pressure of 250 kg/cm² in a mould with dimensions of 9.95 mm × 39.5 mm × 5.95 mm. This mixture was then heat treated at 673 K for 1 h. This concluded the preparation of the CNT/TiO₂ electrodes. The preparation conditions and sample codes are listed in Table-1.

Preparation method	Nomenclatures	
MCPBA+ CNTs + $(400 \text{ mg H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O} + 50 \text{ mL ethylene glycol})$	Pt-C	
MCPBA + CNTs + (4 mL TNB + 16 mL benzene) + phenol resin	CT	
$MCPBA + CNTs + (200 \text{ mg } H_2PtCl_6 \cdot 6H_2O + 50 \text{ mL ethylene glycol}) +$	2Pt-CT	
(4 mL TNB + 16 mL benzene) + phenol resin		
MCPBA + CNTs + $(500 \text{ mg H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O} + 50 \text{ mL ethylene glycol}) +$	5Pt-CT	
(4 mL TNB + 16 mL benzene) + phenol resin		
MCPBA + CNTs + $(800 \text{ mg H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O} + 50 \text{ mL ethylene glycol}) +$	8Pt-CT	
(4 mL TNB + 16 mL benzene) + phenol resin	011-01	

 TABLE-1

 NOMENCLATURES OF CNT/TiO₂, Pt-CNT AND Pt-CNT/TiO₂ COMPOSITES

MCPBA = m-chloroperbenzoic acid; TNB = titanium n-butoxide

Vol. 22, No. 7 (2010) Visible Light Photoelectrocatalytic Degradation of Methylene Blue 5639

Preparation of Pt-CNT/TiO₂ composite electrodes: The oxidized carbon nonotubes were added to ethylene glycol solution containing $H_2PtCl_6GH_2O$, of various concentration and then the solutions were homogenized under reflux at 343 K for 2 h using a magnetic stirrer in a vial. After being heat treated at 773 K for 1 h with a heating rate of 279 K/min, the platinum treated CNT composites were obtained. The platinum treated CNT composites were put into the mixing solution of titanium *n*-butoxide and benzene with a volume ratio of 4:16. Then the solutions were homogenized under reflux at 343 K for 5 h after stirring in a vial. After being stirred, the solutions were transformed to Pt-CNT/TiO₂ gels and these gels were heat treated at 973 K for 1 h with a heating rate of 279 K/min. After cooling, the Pt-CNT/TiO₂ composites were obtained. Then 0.4 g phenol resin was added to the Pt-CNT/TiO₂ composites and the composites were pressed at a pressure of 250 kg/cm² in a mould with dimensions of 9.95 mm \times 39.5 mm \times 5.95 mm. The mixture was then heat treated at 673 K for 1 h. This concluded the preparation of the Pt-CNT/ TiO_2 electrodes. The preparation conditions and the nomenclatures of the samples are listed in Table-1.

Characterization of the Pt-CNT/TiO₂ **composite:** The Brunauer-Emett-Teller (BET) surface area of the Pt-CNT/TiO₂ composites was evaluated from N₂ adsorption isotherm at 77 K using a BET analyzer (Monosorb, USA). XRD technique was used for crystal phase identification and estimation of the anastase-to-rutile ratio. XRD patterns were obtained at room temperature with a diffractometer Shimata XD-D1 (Japan) using Cu K_a radiation. SEM was used to observe the surface state and porous structure of the Pt-CNT/TiO₂ composites using a scanning electron microscope (JOEL, JSM-5200, Japan). EDX spectroscopy was used to measure the elemental analysis of the Pt-CNT/TiO₂ composites. TEM (JEOL, JEM-2010, Japan) at an acceleration voltage of 200 kV was used to investigate the size and distribution of the platinum and titanium deposits on the CNT surface on various samples. TEM specimens were prepared by placing a few drops of sample solution on a carbon grid.

Photoelectrocatalytic degradation: The photoelectrocatalytic degradation was performed by using CNT/TiO₂ and Pt-CNT/TiO₂ electrodes in a 100 mL glass container and then irradiating the system with visible light (8W, KLD-08L/P/N, FAWOO Technology), which was used at the distance of 100 mm from the solution in darkness box. The counter electrode was artificial graphite (TCK, Korea), which dimension was 9.95 mm × 39.5 mm × 5.95 mm. The CNT/TiO₂ and Pt-CNT/TiO₂ electrode were placed in 50 mL of 1×10^{-5} mol/L methylene blue solution. The photoelectrocatalytic degradation of methylene blue was performed with voltage of 6 V and visible light. The photoelectrocatalytic activities of the CNT/TiO₂ and Pt-CNT/TiO₂ and Pt-CNT/TiO₂ electrodes were investigated using the photoelectrocatalytic rate of methylene blue solution, which was measured as function of time. The blue colour of the solution faded gradually with time due to the adsorption and degradation of methylene blue solution and degradation of methylene blue solution of methylene blue in the solution was determined as a function of irradiation time from the absorbance change at a wavelength of 660 nm.

Asian J. Chem.

RESULTS AND DISCUSSION

Structure and morphology of CNT/TiO₂ and Pt-CNT/TiO₂ composites: The values of BET surface areas of CNT/TiO2 and Pt-CNT/TiO2 composites are shown in Table-2. As shown in Table-2, the BET surface areas of CNT/TiO₂ and Pt-C were 198 and 288 m²/g, respectively, while the BET surface areas of platinum treated CNT/TiO₂ composites decreased gradually from 183-116 m²/g with an increase of H₂PtCl₆ concentration. Moreover, the BET surface area of the sample of Pt-C was $288 \text{ m}^2/\text{g}$ and larger than that of the other platinum treated CNT/TiO₂ composites. At the same addition of titanium *n*-butoxide, it was thought that the intensity of the platinum particle aggregation increased with the increase of H₂PtCl₆ concentration. These particles were heavily agglomerated to gather into a rounded mass. These results can be seen clearly from SEM images obtained from powdered Pt-CNT/ TiO₂ composites. The results showed that there is a decrease in the BET surface area of the Pt-CNT/TiO₂ composites after formation of platinum particles by H₂PtCl₆ treatment. This was suggested that some porosity was developed during the heat treatment. It was thought that the composites are nano materials that include a lot of micropores. It was thought that there are two possible reasons. First, it could be attributed to the micropores being partly blocked by the formation of platinum particles on the CNT/TiO₂ surface during heat treatment. Second, the BET surface area decreased due to the curing of polymer resin with heat treatment, which blocked the micropores and formed some new mesopores. It was possible that the phenol resin had coated some CNT/TiO₂ particles to form some larger composite particles during the curing process. As expected, the BET surface area is thought to decrease due to the blocking of the micropores by surface complexes introduced through the formation of Pt-CNT/TiO₂ composites.

Sample	S_{BET} (m ² /g)
Pt-C	288
СТ	198
2Pt-CT	183
5Pt-CT	134
8Pt-CT	116

TABLE-2 SURFACE AREAS OF CNT/TiO,, Pt-CNT AND Pt-CNT/TiO, COMPOSITES

The XRD results for the catalyst samples are shown in Fig. 1. Diffraction peaks corresponding to anatase and rutile phases are marked with 'A' and 'R', respectively. Diffraction peaks corresponding to platinum phases are marked with 'Pt'. The structures for CNT/TiO₂ showed a mix of anatase and rutile crystals. It is well known that the crystal structure of the TiO₂ is mainly determined by heat treated temperature. The peaks at 25.3, 37.8, 48.0 and 62.5° are the diffractions of (101), (004), (200) and (204) planes of anatase, indicating the prepared CNT/TiO₂ composite existed in anatase state. The peaks at 27.4, 36.1, 41.2 and 54.3° belong to the different peaks

Visible Light Photoelectrocatalytic Degradation of Methylene Blue 5641

Fig. 1. XRD patterns of CNT/TiO₂, Pt-CNT and Pt-CNT/TiO₂ composites

of (110), (101), (111) and (211) of rutile. Therefore, it can be concluded that the developed CNT/TiO₂ composite had a mixing structure of anatase and rutile crystals when annealed at 973 K. According to Inagaki *et al.*²², a sample phase formed below 773 K is transformed from an anatase to a rutile-type structure above 873 K and changes into a single phase of rutile at 973-1173 K. We have previously demonstrated that the crystallization phenomena in CNT/TiO₂ composites heat treated at 973 K results in a mixed anatase-rutile structure^{23,24}. However, for the platinum treated CNT/TiO₂ composites, the structures for Pt-CT series showed an anatase crystal. It was considered that the introduction of platinum suppress the phase transform of TiO₂ from anatase to rutile-type structure during the heat treatment.

In addition, for the Pt-CNT/TiO₂ samples, the characteristic peaks of face centered cubic crystalline platinum at 39, 46 and 68° are assigned as the (111), (200) and (220) plane, respectively^{25,26}. It considered that intensity of the peaks from platinum metal is derived from the Pt-CNT/TiO₂ composite and strengthened with an increase of H₂PtCl₆ concentration. Sharp diffraction peaks indicated the formation of pure platinum with high crystalline.

The micro-surface structures and morphology of Pt-CNT, CNT/TiO₂ and Pt-CNT/TiO₂ composites were characterized by SEM (Fig. 2) and TEM (Fig. 3). Fig. 2 shows the changes in the morphology of Pt-CNT, CNT/TiO₂ and Pt-CNT/TiO₂ composites. TiO₂ particles were fixed well on the surface of the CNT network of non Pt treated CNT/TiO₂ samples. As shown in Fig. 2(c-e), it was also observed that the amount of rounded mass increased with an increase in the amount of H₂PtCl₆ and that the size of platinum particles became large with an increase in the amount of platinum. According to Wang's reports²⁷, a good dispersion of small particles could provide more reactive sites for the reactants than aggregated particles. At the same time, the conduction of a CNT network can facilitate the electron transfer

5642 Zhang et al.

Asian J. Chem.

(e)

Fig. 2. SEM images obtained from powdered CNT/TiO₂, Pt-CNT and Pt-CNT/TiO₂ composites; (a) Pt-C, (b) CT, (c) 2Pt-CT, (d) 5Pt-CT and (e) 8Pt-CT

between the adsorbed dye molecules and the catalyst substrate²⁸. It was beneficial for the enhancement of the photoelectrocatalytic activity of these composites.

As shown in Fig. 2(c-e), platinum particles were attached on the surface of the CNT network in the form of round mass and the distribution was not uniform. Moreover, the intensity of aggregation increased with an increase of H_2PtCl_6 concentration. These particles were heavily agglomerated to form lager clusters [Fig. 2(e)]. These results can be seen clearly in Fig. 2(c-e). These results are as well confirmed by TEM inspection of Pt-CNT/TiO₂ composites. As shown in Fig. 3, for the CNT/TiO₂ composites, the TiO₂ particles were distributed uniformly outside surface of CNT tube; for the Pt-CNT/TiO₂ composites, the TiO₂ particles were still distributed

Fig. 3. TEM micrographs obtained from powdered CNT/TiO₂ and Pt-CNT/TiO₂ composites; (a) CT, (b) 5Pt-CT

uniformly outside surface of CNT tube, platinum particles were completely attached on the surface of the tube although this caused partial agglomeration. However, in most cases, due to the capillary effect, platinum particles were formed outside the tubes^{29,30}, leading to poor synergic effect of the Pt-CNT/TiO₂ composites.

Fig. 4 shows the EDX spectra of prepared Pt-CNT, CNT/TiO₂ and Pt-CNT/ TiO₂ composites. From the EDX data, the main elements such as C, O, Ti and Pt were created and other impure elements were also made. The results of EDX elemental microanalysis of CNT/TiO₂ and Pt-CNT/TiO₂ composites are listed in Table-3. The platinum contents of 2Pt-CT 5Pt-CT and 8Pt-CT are 1.9, 5.5 and 8.1 %, respectively. As expected the platinum contents in the composites increased with an increase of H₂PtCl₆ concentration. It was proposed that the increase of platinum content increased the amount of agglomerated platinum particles. The same phenomena can be observed in the micro-surface structures and the morphology of Pt-CNT/TiO₂ composites (Fig. 2).

Pt-CNT AND Pt-CNT/TiO ₂ COMPOSITES								
Sample -	Element (wt. %)							
	С	0	Ti	Pt	Total			
Pt-C	83.3	4.8	0	11.9	100			
СТ	53.3	23.0	21.7	0	100			
2Pt-CT	28.6	35.3	34.2	1.9	100			
5Pt-CT	29.3	29.8	35.4	5.5	100			
8Pt-CT	26.8	30.1	35.0	8.1	100			

TABLE-3 ELEMENTAL MICROANALYSIS OF CNT/TiO₂, Pt-CNT AND Pt-CNT/TiO, COMPOSITES

Photoelectrocatalytic activities analysis: Fig. 5 shows the changes in relative concentration (c/c₀) of methylene blue with the CNT/TiO₂ and Pt-CNT/TiO₂ composite electrodes under visible light irradiation with electron currents in methylene blue solution (1×10^{-5} mol/L). Here we discussed three kinds of degradation process:

5644 Zhang et al.

Asian J. Chem.

Fig. 4. EDX elemental microanalysis of CNT/TiO₂, Pt-CNT and Pt-CNT/TiO₂ composites; (a) Pt-C, (b) CT, (c) 2Pt-CT, (d) 5Pt-CT and (e) 8Pt-CT

(1) Photoelectrocatalytic: Visible light irradiation using the electrodes with a potential of 6 V; (2) Photocatalytic: Visible light irradiation using the electrodes; (3) Photo: Only visible light irradiation. From the results present in Fig. 5, compared with CNT/TiO₂ and Pt-CNT/TiO₂ composite electrodes, the photoelectrocatalytic and photocatalytic effects of the platinum treated CNT/TiO₂ composite electrodes were all better than that of non-platinum treated CNT/TiO₂. It was implied that the introduction of platinum enhanced the photoelectrocatalytic and photocatalytic degradation of methylene blue solution. However, for the platinum treated CNT/TiO₂ series, the photoelectrocatalytic and photocatalytic and photocatalytic degradation efficiency of the sample 2Pt-CT is higher than that of the sample 5Pt-CT and 8Pt-CT in the same irradiation time, although the platinum content of the sample 2Pt-CT was lowest among the three platinum treated CNT/TiO₂ composites. The electrocatalytic activity of platinum nanoparticles for this reaction is dependent on various factors, which involves the size and dispersion of the particles, supporting materials and their surface conditions²¹. In the case of 5Pt-CT and 8Pt-CT, the Pt nanoparticles were heavily agglomerated

Visible Light Photoelectrocatalytic Degradation of Methylene Blue 5645

Fig. 5. Dependence of relative concentration (c/c_0) of methylene blue in the aqueous solution with different Pt-CNT/TiO₂ electrodes on time of PEC, PC and P reaction. (PEC: Visible light irradiation using the electrodes with a potential of 6 V; PC: Visible light irradiation using the electrodes; P: Only visible light irradiation)

to gather into a rounded mass [Fig. 2(d-e)], which leads to the significant reduction on its activity. It is well known that the PEC activity will increase with an increase of platinum content in a certain range. At the same time, the morphology of platinum in the Pt-CNT/TiO₂ composites is an important factor. Note that the optimization of PEC oxidation of methylene blue using Pt-CNT/TiO₂ composite electrodes will be studied in detail in another paper.

For CNT/TiO₂ composites, carbon nonotubes acting as electron sensitizer and donator in the composite photocatalysts may accept the electron (e⁻) induced by light irradiation^{7,31}. The electrons in carbon nonotubes may be transferred into the conduction band in the TiO_2 particles. It is thought that a photo-induced charge transfer occurs in the electronic interaction between the carbon layers or walls of the carbon nonotubes and TiO₂. The electrons formed by the light irradiation on the surface of the carbon nonotubes migrate to the surface of the TiO₂. Thus, they lead to the higher rate of the reduction of the e⁻/h⁺ pair recombination and the increase of the photon efficiency, which reduces the quantum yield of the TiO₂ catalyst. It has been reported that the photo- or electro-induced charge transfer occurs in the electronic interaction between TiO₂ and carbon nonotubes³². Since they connect well with each other and there is a strong interaction between carbon nonotubes and TiO₂, we propose that electron transfer also happens in the CNT/TiO₂ composites, retarding the e⁻/h⁺ recombination and increase in photon efficiency. The light absorption capability of the photocatalyst and the separation of photogenerated e⁻/h⁺ pairs are crucial factors influencing the photoactivity.

For Pt-CNT/TiO₂ composites (with the exception of the photocatalysis of CNT/ TiO₂ composites discussed above), the presence of platinum ion is believed to retard the e^{-}/h^{+} pairs recombination by serving as an electron sink (schottky-barrier electron

Asian J. Chem.

trapping) and to facilitate the interfacial electron transfer to dioxygen or other electron acceptors (*e.g.*, CNT networks)³³. In this case, platinum nanoparticles adhered to the surface of carbon nonotubes in the forms of small clusters and the distribution was not uniform (Fig. 2). Moreover, when these platinum nanoparticles were heavily agglomerated to form round mass as shown in Fig. 3(b), some regional part on the CNT surface was completely enwrapped by the round mass. It is thought that the particles do not connect well with each other between carbon nonotubes and TiO₂. It is proposed that electron transfer also happens in the Pt-CNT/TiO₂ composites, but the round mass resulted in the increase of e^-/h^+ recombination and the decrease of photon efficiency.

Furthermore, the photoelectrocatalytic degradation of methylene blue was better than that of photocatalytic, it was thought that the recombination of photogenerated e^{-}/h^{+} pairs was suppressed by the externally applied electric field in the photoelectrocatalytic reaction. Thus the life of the e^{-}/h^{+} is prolonged, with electrons that are able to migrate to the solid-liquid interface and promote redox reactions. At the same time, the holes are removed *via* their reaction with the methylene blue in the solution, which occurs only at those TiO₂/solution interfaces. The photocatalytic reaction occurs when HO[•] radically reacts with the methylene blue molecule.

In this study, it was considered that the photoelectrocatalytic degradation of the methylene blue solution could be attributed to the synergetic effects of photodegradation of TiO_2 , the electro-assistant of carbon nonotubes, the enhancement of platinum and the function of applied potential. So this expatiation for the degradation mechanism is in accord with results of methylene blue degradation by photoelectrocatalytic using the Pt-CNT/TiO₂ composite electrodes.

Effect of re-use on Pt-CNT/TiO₂ electrode performance: The stability of 2Pt-CT electrode was examined by five times of repeated use on methylene blue degradation, as shown in Fig. 6. A loss of the activity (12.4 % in 60 min) of 2Pt-CT electrode was found after its first use, whereas, the activity differences were inconspicuous among the second to fifth re-use of the 2Pt-CT electrode. The possible reason should be responsible for the activity loss of 2Pt-CT electrode. It is related to Pt change, either the leaching of platinum or covering of platinum sites by organic substances³⁴.

Conclusion

In this study, we presented the fabrication and characterization of CNT/TiO₂ and Pt-CNT/TiO₂ composite electrodes. The BET surface area of Pt-CNT/TiO₂ composites decreased with an increase of platinum component. XRD data revealed that the structure for the Pt-CNT/TiO₂ composites showed a single anatase crystal phase. The TEM microphotographs of CNT/TiO₂ and Pt-CNT/TiO₂ composites showed that TiO₂ particles were distributed uniformly in the carbon nonotubes network and the platinum particles were fixed on the surface of the carbon nonotubes, although they were partly aggregated. From the EDX data, the main elements such as C, O, Ti and Pt existed. The Pt-CNT/TiO₂ samples have a higher photoelectro-

Visible Light Photoelectrocatalytic Degradation of Methylene Blue 5647

Fig. 6. Effect of reuse of 2Pt-CT electrode on the degradation of methylene blue in the aqueous solution with photoelectrocatalytic reaction. (PEC: Visible light irradiation using the electrodes with a potential of 6 V)

catalytic and photocatalytic degradation efficiency than that of the non-platinum treated CNT/TiO₂ sample. The results demonstrated that the photoelectrocatalytic degradation of methylene blue solution could be attributed to synergetic effects of the photo-degradation of TiO₂, the electron assistance of the carbon nanotubes network, the enhancement of platinum and a function of the applied potential. The morphology of platinum in the Pt-CNT/TiO₂ composites is an important factor. A loss of the catalytic activity (12.4 % in 60 min) of 2Pt-CT electrode was found after its first use.

REFERENCES

- 1. L.C. Chen, Y.C. Ho, W.S. Guo, C.M. Huang and T.C. Pan, *Electrochim. Acta*, 54, 3884 (2009).
- 2. D.B. Hamal and K.J. Klabunde, J. Colloid. Interf. Sci., 311, 514 (2007).
- 3. O. Carp, C.L. Huisman and A. Reller, *Prog. Solid State Chem.*, **32**, 33 (2004).
- 4. W.D. Wang, P. Serp, P. Kalck and J.L.Faria, J. Mol. Catal. A, Chem., 235, 194 (2005).
- 5. M.L. Chen, J.S. Bae and W.C. Oh, Bull. Korean Chem. Soc., 27, 1423 (2006).
- 6. P.F. Fu, Y. Luan and X.G. Dai, J. Mol. Catal. A, Chem., 221, 81 (2004).
- 7. W.C. Oh and M.L. Chen, Bull. Korean Chem. Soc., 29, 159 (2008).
- 8. Y. Zhang, N.W. Franklin, R.J. Chen and H.J. Dai, Chem. Phys. Lett., 331, 35 (2000).
- 9. W.C. Oh, A.R. Jung and W.B. Ko, J. Ind. Eng. Chem., 13, 1208 (2007).
- 10. S. Yang, W. Zhu, X. Li, J. Wang and Y. Zhou, Catal. Commun., 8, 2059 (2007).
- 11. F.J. Zhang, M.L. Chen, J.E. Lee and W.C. Oh, Korean Soc. Environ. Eng., 14, 32 (2009).
- 12. F.J. Zhang, M.L. Chen and W.C. Oh, Mater. Res. Soc. Korea, 18, 583 (2008).
- 13. G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998).
- 14. R.H. Baughman, A.A. Zakjidov and W.A.d. Heer, Science, 297, 787 (2002).
- 15. Y. Mu, H. Liang, J. Hu, L. Jiang and L. Wan, J. Phys. Chem., 109B, 22212 (2005).
- 16. J. Garcia, H.T. Gomes, P. Serp, P. Kalck, J.L. Figueiredo and J.L. Faria, *Catal. Today*, **102**, 101 (2005).

- 17. A. Kongkanand and P.V. Kamat, ACS Nano., 1, 13 (2007).
- 18. G. An, W. Ma, Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao and K. Ding, Carbon, 45, 1795 (2007).
- 19. W. Wang, P. Serp, P. Kalck and J.L. Faria, Appl. Catal. B: Environ., 56, 305 (2005).
- 20. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin and S. Bonnamy, *Carbon*, **42**, 1147 (2004).
- 21. Y.Y. Tong, C. Rice, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc., 122, 1123 (2000).
- 22. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, Carbon, 41, 2619 (2003).
- 23. W.C. Oh and M.L. Chen, J. Ceram. Process. Res., 9, 100 (2008).
- 24. E. Berman, Toxic Metals and their Analysis, Heyden and Son, London, pp. 116-127 (1980).
- 25. H.Q. Song, X.P. Qiu and F.S. Li, Electrochim. Acta, 53, 3708 (2008).
- K. Tammeveski, T. Tenno, A. Rosental, P. Talonen, L.S. Johansson and L. Niinisto, J. Electrochem. Soc., 146, 669 (1999).
- 27. W.D. Wang, P. Serp, P. Kalck, C.G. Silva and J.L. Faria, Mater. Res. Bull., 43, 958 (2008).
- P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa and J.R. Tinlin, *Appl. Catal. B Environ.*, 41, 371 (2003).
- 29. U. Ugarte, A. Chatelain and W.A. De Heer, Science, 274, 1897 (1996).
- 30. P.M. Ajayan and S. Iijima, Nature, 361, 333 (1996).
- 31. Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge and P.K. Wong, *Appl. Catal. A Gen.*, **289**, 186 (2005).
- 32. K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 1 (2009).
- 33. A. Furube, T. Asahi, H. Masuhara, H. Yamashita and M. Anpo, *Chem. Phys. Lett.*, **336**, 424 (2001).
- 34. Z.Q. Liu, J. Ma and Y.H. Cui, Carbon, 46, 890 (2008).

(*Received*: 27 November 2009; *Accepted*: 1 April 2010) AJC-8602