Asian Journal of Chemistry

Vol. 22, No. 5 (2010), 3422-3428

Synthesis, Characterization and Antimicrobial Activities of Some Novel Derivatives of Phenol

A. Abdul Jameel* and M. Syed Ali Padusha

Department of Chemistry, Jamal Mohamed College, Tiruchirapalli-620 020, India E-mail: jameelchem2001@yahoo.com; padusha_chem@yahoo.co.in

Phenolic compounds and benzaldehyde have undergone condensation with compounds containing active hydrogen atom like urea, thiourea, semicarbazide and thiosemicarbazide. The compounds thus synthesized (I-XII) were characterized by elemental analysis, molecular weight determination by Rast micro method, TLC and melting point and spectral methods such as IR, ¹H NMR, ¹³C NMR and mass. The antimicrobial activities of synthesized compounds were also studied.

Key Words: Phenolic derivatives, Betti base, Mannich base.

INTRODUCTION

The chemical reactions of aldehydes, amides and phenols are well known that the compounds containing amide moiety exhibit a wide range of biological activities¹⁻⁷. In this view, the authors have synthesized the compounds **I-XII** by reacting benzaldehyde as a fixed component and varying amide component and phenolic compounds.

EXPERIMENTAL

The melting points of the compounds was determined in open capillaries and are uncorrected. Purity of the compounds was checked by TLC using silica gel G coated glass plates with chloroform and ethyl acetate (1:1) as irrigant and iodine vapour as visualizing agent. The IR spectra were recorded in the ACIC at Trichy in KBr medium. The ¹H and ¹³C NMR spectra of compound were recorded on a Brucker 300 MHz model in DMSO using tetramethyl silane as an internal standard. The elemental analyses were performed on a Perkin-Elmer series C, H, N and S analyzer-2000. Mass spectra were recorded on a Jeol-8X 102 (FAB).

General procedure for synthesis of compounds I-IV: To a mixture of phenol (0.05 mol) and benzaldehyde (0.05 mol), the compounds like urea, thiourea, semicarbazide and thiosemicarbazide in ethanol (0.05 mol) were added in drops and the reaction mixture was stirred in hot water bath maintained at 80 °C with constant stirring for *ca*. 1 h. The solid separated on cooling was recrystalized from ethanol (**Scheme-I**). The analytical data of the synthesized compounds are given in Table-1.

General procedure for synthesis of compounds V-VIII: To a mixture 4-nitrophenol (0.05 mol) and benzaldehyde (0.05 mol) compounds like urea, thiourea, semicarbazide and thiosemicarbazide in ethanol (0.05 mol) were added in drops and the reaction mixture was stirred well at room temperature for *ca*. 5 h. The colloidal formed was solution kept in a freezer for 24 h. The solid separated on cooling was washed with ether and recrystallized from ethanol (**Scheme-II**). The analytical data of the synthesized compounds are given in Table-1.

General procedure for synthesis of compounds IX-XII: To a mixture 4-aminophenol (0.05 mol) and benzaldehyde (0.05 mol) compounds like urea, thiourea, semicarbazide and thiosemicarbazide in ethanol (0.05 mol) were added in drops and the reaction mixture was stirred well for *ca.* 2 h in an ice path. The solid separated was washed with petroleum ether and recrystallized from ethanol (**Scheme-III**). The analytical data of the synthesized compounds are given in Table-1.

Synthesis of Some Novel Derivatives of Phenol 3425

1-((2-Hydroxyphenyl)(phenyl)methyl)urea (compound-I): IR: (KBr, v_{max}, cm⁻¹): 3504 (Ar-OH, stretching), 3247 (NH₂, stretching), 1635 (C=O), 1235 (CN). ¹H NMR (DMSO) δ: 11.8 (s, H, OH), 11.5 (s, 2H, NH₂), 8.27 (d, H, NH), 3.8 (q, H, NH), 2.9 (s, H, CH). ¹³C NMR (DMSO) δ: 167 (C=O), 129 (Ar), 128 (Ar), 30 (CH). MS: m/z: 242.

3426 Abdul Jameel et al.

Asian J. Chem.

Compd.	Yield (%)	m.w.	m.f.	m.p. (°C)	Elemental analysis (%): Found (calcd.)			
					С	Н	Ν	S
T	50	242	СИМО	126	69.41	5.82	11.56	
I	30	242	$C_{14} \Pi_{14} \Pi_2 O_2$	150	(69.40)	(5.80)	(11.54)	-
п	50	258	$\mathbf{C}_{14}\mathbf{H}_{14}\mathbf{N}_{2}\mathbf{OS}$	186	65.09	5.46	10.84	12.41
11	50				(65.07)	(5.45)	(10.82)	(12.40)
III	50	257	$C_{14}H_{15}N_3O_2$	152	65.35	5.88	16.33	
					(65.33)	(5.86)	(16.32)	-
IV/	50	273	$C_{14}H_{15}N_3OS$	220	61.51	5.53	15.37	11.73
1 V					(61.50)	(5.52)	(15.35)	(11.71)
V	62	287	$C_{14}H_{13}N_3O_4$	165	58.53	4.56	14.63	
v	02				(58.52)	(4.55)	(14.61)	-
VI	71	202	$C_{14}H_{13}N_3O_3S$	240	55.43	4.32	13.85	10.57
VI	/1	505			(55.42)	(4.31)	(13.84)	(10.56)
VII	50	$0 302 C_{14}H_{14}N_4C_{14}$	СНИО	206	55.63	4.67	18.53	_
V 11	50		$C_{14} + 1_{14} + 4_{4} + 0_{4}$		(55.61)	(4.65)	(18.52)	
VIII	60	318	318 $C_{14}H_{14}N_4O_3S$	258	52.80	4.47	17.63	10.09
VIII	00	510			(52.82)	(4.43)	(17.60)	(10.07)
IX	76	257	СНИО	218	65.30	5.82	16.30	_
IA	70	231	$C_{14} I_{15} I_{3} O_{2}$		(65.35)	(5.88)	(16.33)	
x	72	273	CHNOS	253	61.48	5.52	15.35	11.71
21	12	215	C ₁₄ H ₁₅ H ₃ OD	255	(61.51)	(5.53)	(15.37)	(11.73)
XI	75	272	$C_{14}H_{16}N_4O_2$	209	61.72	5.91	20.54	_
					(61.75)	(5.92)	(20.58)	
XII	78	288	$C_{14}H_{16}N_4OS$	265	58.28	5.56	19.41	11.10
ЛП					(58.31)	(5.59)	(19.43)	(11.12)

TABLE-1 ANALYTICAL DATA OF THE SYNTHESIZED COMPOUNDS

1-((2-Hydroxyphenyl)(phenyl)methyl)thiourea (compound-II): IR (KBr, v_{max} , cm⁻¹): 3507 (Ar-OH, stretching), 3236 (NH₂, stretching), 1538 (C=S), 1232 (CN), ¹H NMR (DMSO) δ: 9.68 (S, aromatic C-OH), 9.53 (S, NH₂ thiourea), 5.19 (S, aromatic CH). ¹³C NMR (DMSO) δ: 182.5 (CS, thiourea), 54.0 (aromatic CH). MS: m/z: 258.

2-((2-Hydroxyphenyl)(phenyl)methyl)hydrazinecarboxamide (compound-III): IR: (KBr, ν_{max} , cm⁻¹): 3510 (Ar-OH, stretching), 3242 (NH₂, stretching), 1638 (C=O), 1237 (CN), ¹H NMR (DMSO) δ : 11.7 (s, H, OH), 11.6 (s, 2H, NH₂), 8.04 (d, H, NH), 3.4 (q, H, NH), 2.7 (s, H, CH). ¹³C NMR (DMSO) δ : 187.5 (CS, thiourea), 56.0 (aromatic CH). MS: m/z: 257.

2-((2-Hydroxyphenyl)(phenyl)methyl)hydrazinecarbothioamide (compound-IV): IR: (KBr, v_{max} , cm⁻¹): 3500 (Ar-OH, stretching), 3242 cm⁻¹ (NH₂, stretching), 1534 (C=S), 1294 (CN), ¹H NMR (DMSO) δ : 11.4 (s, H, OH), 11.2 (s, 2H, NH₂), 8.04 (d, H, NH), 3.4 (q, H, NH), 2.5 (s, H, CH). ¹³C NMR (DMSO) δ : 177 (C=S), 129 (Ar), 128 (Ar), 32 (CH). MS: m/z: 273.

1-((2-Hydroxy-5-nitrophenyl)(phenyl)methyl)urea (compound-V): IR: (KBr, ν_{max} , cm⁻¹): 3510 (Ar-OH), 3041 (CH, stretching), 1612 (NH₂), 1208 (C=O). ¹H NMR (DMSO) δ: 11.8 (s, H, OH), 11.1 (s, 2H, NH₂), 9.2 (d, H, NH), 7.6-7.8 (M,

2H, NH-NH) 2.7 (s, H, CH). ¹³C NMR (DMSO) δ: 167 (C=O), 128 (Ar), 129 (Ar), 30 (CH), MS: m/z: 287.

1-((2-Hydroxy-5-nitrophenyl)(phenyl)methyl)thiourea (compound-VI): IR (KBr, v_{max} , cm⁻¹): 3513 (Ar-OH), 3041 (CH, stretching), 1614 (NH₂), 1318 (C=S). ¹H NMR (DMSO) δ : 11.3 (s, H, OH), 11.2 (s, 2H, NH₂), 9.8 (d, H, NH), 7.8-8.0 (m, 2H, NH-NH), 2.4 (s, H, CH). ¹³C NMR (DMSO) δ : 177 (C=S), 129 (Ar), 128 (Ar), 30 (CH). MS: m/z: 303.

2-((2-Hydroxy-5-nitrophenyl)(phenyl)methyl)hydrazinecarboxamide (compound-VII): IR: (KBr, v_{max} , cm⁻¹): 1632 (C=O), 3518 (Ar-OH), 1617 (NH₂), 3048 (CH stretching). ¹H NMR (DMSO) δ : 8.08 (s, H, OH), 8.03 (s, H, NH₂), 7.7-7.9 (m, 2H, NH-NH). ¹³C NMR (DMSO) δ : 30 (CH), 167 (C=O), 128 (Ar), 129 (Ar). MS: m/z: 302.

2-((2-Hydroxy-5-nitrophenyl)(phenyl)methyl)hydrazinecarbothioamide (compound-VIII): IR: (KBr, v_{max} , cm⁻¹): 3408 (Ar-OH), 1599 (NH₂), 3148 (CH stretching), 1098 (C=S). ¹H NMR (DMSO) δ : 8.05 (s, H, OH), 8.0 (s, H, NH₂), 7.7-7.9 (m, 2H, NH-NH). ¹³C NMR (DMSO) δ : 177 (C=S), 128 (Ar), 129 (Ar), 30 (CH). MS: m/z: 318.

1-((5-Amino-2-hydroxyphenyl)(phenyl)methyl)urea (compound-IX): IR: (KBr, v_{max} , cm⁻¹): 3515 (Ar-OH), 3110 (CH, stretching), 1620 (NH₂), 1210 (C=O). ¹H NMR (DMSO) δ: 13.1 (s, 2H, NH₂), 12.8 (s, H, OH), 10.2 (d, H, NH), 8.6-8.8 (m, 2H, NH-NH) 3.5 (s, H, CH). ¹³C NMR (DMSO) δ: 171 (C=O), 128 (Ar), 129 (Ar), 32 (CH), MS: m/z: 257.

1-((5-amino-2-hydroxyphenyl)(phenyl)methyl)thiourea (compound-X): IR (KBr, v_{max} , cm⁻¹): 3513 (Ar-OH), 3041 (CH, stretching), 1614 (NH₂), 1318 (C=S). ¹H NMR (DMSO) δ: 11.3 (s, H, OH), 11.2 (s, 2H, NH₂), 9.8 (d, H, NH), 7.8-8.0 (m, 2H, NH-NH), 2.4 (s, H, CH). ¹³C NMR (DMSO) δ: 177 (C=S), 129 (Ar), 128 (Ar), 30 (CH), MS: m/z: 273.

2-((5-Amino-2-hydroxyphenyl)(phenyl)methyl)hydrazinecarboxamide (**compound-XI):** IR: (KBr, ν_{max} , cm⁻¹): 1632 (C=O), 3518 (Ar-OH), 1617 (NH₂), 3048 (CH stretching). ¹H NMR (DMSO) δ: 8.08 (s, H, OH), 8.03 (s, H, NH₂), 7.7-7.9 (m, 2H, NH-NH). ¹³C NMR (DMSO) δ: 167 (C=O), 128 (Ar), 129 (Ar), 30 (CH). MS: m/z: 272.

2-((5-Amino-2-hydroxyphenyl)(phenyl)methyl)hydrazinecarbothioamide (compound-XII): IR: (KBr, v_{max} , cm⁻¹): 3408 (Ar-OH), 3148 (CH stretching), 1599 (NH₂), 1098 (C=S). ¹H NMR (DMSO) δ: 8.05 (s, H, OH), 8.0 (s, H, NH₂), 7.7-7.9 (m, 2H, NH-NH). ¹³C NMR (DMSO) δ: 177 (C=S), 128 (Ar), 129 (Ar), 30 (CH). MS: m/z: 288.

Antimicrobial activity: The synthesized compounds (I-XII) were screened for antibacterial and antifungal activity against certain pathogenic bacteria by disc diffusion method at concentration of 10 μ g/mL in DMSO using both gram positive *S. aureus, B. substilis*, gram negative *E. coli, P. aeruginosa* and antifungal activity against *C. albicans*. The zone of inhibition was measured in mm and the activity was compared with ciprofloxacin 1 μ g/disc for bacteria, clotrimazole 10 μ g/disc for fungi as standard drugs. The compound posses appreciable antibacterial activity against selected organism when compared with the standard. 3428 Abdul Jameel et al.

Asian J. Chem.

RESULTS AND DISCUSSION

Phenol, benzaldehyde and the compounds like urea, thiourea, semicarbazide and thiosemicarbazide in equimolar afford compounds I-IV. 4-Nitrophenol, benzaldehyde and the compounds like urea, thiourea, semicarbazide and thiosemicarbazide in equimolar afford compounds V-VIII. 4-Aminophenol, benzaldehyde and the compounds like urea, thiourea, semicarbazide and thiosemicarbazide in equimolar afford compounds **IX-XII**. All the compounds are characterized by means of physical methods (melting point, elemental analysis, molecular weight determination by Rast micro method and TLC) and spectral methods (IR, ¹H NMR, ¹³C NMR and mass). All the compounds I-XII were screened for antibacterial and antifungal activity against certain organisms. All compounds possess appreciable activity against selected organisms. The zone of inhibition values are presented in Table-2. TABLE-2

	Diameter zone of inhibition (mm)							
Compd.	Gram l	Positive	Gram	Fungi				
	S. aureus	B. subtilis	E. coli	P. aeruginosa	C. albicans			
Ι	10	16	14	11	09			
II	16	15	13	NI	10			
III	10	13	NI	08	07			
IV	12	12	12	NI	15			
V	15	08	10	09	13			
VI	14	18	17	NI	14			
VII	11	15	12	07	13			
VIII	15	12	13	10	17			
IX	13	11	10	12	10			
Χ	15	13	09	12	08			
XI	12	17	15	16	10			
XII	10	NI	17	18	13			
Standard	20	19	16	19	12			
Solvent	NI	NI	NI	NI	NI			

ANTIMICROBIAL	ACTIVITIES	OF THE	SYNTHESIZEL	
ANTIMICRODIAL	ACTIVITED	OF THE	STRIFTESTEE	COMICONDS

REFERENCES

- 1. V. Alagarsamy, R. Venkatesaperumal, S. Vijayakumar, T. Amgauarkani, P. Pounammal, S. Senthilganesh and S. Kandeeban, Pharmazie, 57, 306 (2002).
- 2. R. Venkatesaperumal, M. Adiraj and P. Shanmugapandiyan, Indian Drugs, 38, 156 (2001).
- 3. J.H. Burckhalter, F.H. Tendick, E.M. Jones, P.A. Jones, W.F. Holcomb and A.L. Rawlins, J. Am. Chem. Soc., 70, 1363 (1948).
- 4. D.M. Stout, W.L. Matier, C.B. Yang, R.D. Reynolds and B.S. Brown, J. Med. Chem., 26, 808 (1983).
- 5. R. Mahesh and R.V. Perumal, Indian J. Chem., 43B, 1012 (2004).
- 6. A.N.M. Kasim, D. Venkappaya and G.V. Prabu, J. Indian Chem. Soc., 76, 67 (1999).
- 7. A.A. Jameel and M.S.A. Padusha, Indian J. Heterocycl. Chem., 16, 197 (2006).

(Received: 4 May 2009; Accepted: 13 January 2010) AJC-8288