Synthesis of 1-Phenyl Naphthalene and Pericarbonyl Lignans

Sujata Deo, Farhin Inam, R.P. Mahashabde* and A.N. Jadhav
Chemistry Department, Institute of Science, Nagpur-440 001, India
Email: rachana_mahashabde@rediffmail.com

Abstract

The approach towards synthesis of 1-phenyl naphthalene and pericarbonyl lactone by cyclization of Perkin condensation product, \propto arylidene β-benzoyl propionic acid with polyphosphoric acid and concentrated sulphuric acid can be achieved in one step.

Key Words: Synthesis, 1-Phenyl naphthalene, Pericarbonyl lignans.

INTRODUCTION

Synthesis of 1-phenyl naphthalene has been subject of great interest, as it is an important intermediate for synthesis of cyclo lignans and also for their physiological properties ${ }^{1}$. Haworth et al. ${ }^{2}$ synthesized Taiwanin-C \& and Block Stevenson ${ }^{3}$ obtained Justicidin B and Justicidin-E with 1-phenyl naphthalene system.

To prepare pericarbonyl lactone ${ }^{4} \beta$-benzoyl propionic acid was used which has two reactive methylene groups and a carboxylic functional group which could lead to the basic skeleton of lignan. The carboxyl group would yield part of furan ring and the oxo group could be reduced.

EXPERIMENTAL

Conversion of \propto-arylidene β-benzoyl propionic acid to 1-phenyl naphthoic acid (7): Treatment of α-arylidene β-benzoyl propionic acid (4) with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or PPA at $100^{\circ} \mathrm{C}$ for 1 h gave precipitate on crushed ice which was identified as 1-phenyl naphthoic acid (7).

Infrared spectra showed absorption at $1670 \mathrm{~cm}^{-1}$ for carboxylic acid group. Structure also supported by NMR studies. Above reactions takes place by enolization followed by removal of hydrogen and hydroxyl group (Table -4).

Conversion of α-arylidene β-benzoyl propionic acid to pericarbonyl lactone (8): \propto-Arylidene β-benzoyl propionic acid (4) was treated with aq. formaldehyde and sodium hydroxide to give product identified as \propto-arylidene β-methylene β-benzoyl propionic acid (5).

The IR spectra of 5 showed broad band at $1660 \mathrm{~cm}^{-1}$ for carbonyl group. NMR spectra for 2 methylene protons showed singlet at 6.060 and 7.85 singlet for olefinic proton.

The compound 5 was treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$ for 24 h and mixture was poured on ice when 1-aryl naphthalene carboxylic acid lactone ($\mathbf{8}$) was obtained which was isolated and crystallized to give yellow solid. IR spectra showed absorption at $1760 \mathrm{~cm}^{-1}$ indicating presence of 5 membered lactone ring. NMR spectra were also consistent to the structure assigned to them.

TABLE-1

Aryl aldehyde (β-Aroyl propionic acid)	Butenolide (m.f.)	$\begin{aligned} & \text { Yield, \% } \\ & \text { (m.p., } \left.{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \mathrm{UV} \lambda_{\max }, \\ \mathrm{nm}(\log €) \end{gathered}$	IR (cm^{-1})	NMR δ Ar, H, R
Veratraldehyde (β-Benzoyl propionic acid)	$\begin{gathered} \mathbf{3 a} \\ \left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{gathered} 73.3 \\ (125) \end{gathered}$	$\begin{aligned} & \hline 249(4.21) \\ & 392(4.32) \\ & 486(4.24) \\ & \hline \end{aligned}$	$\begin{aligned} & 1772 \\ & 1762 \end{aligned}$	-
Veratraldehyde (4-Methoxy β-benzoyl propionic acid)	$\begin{gathered} \hline \mathbf{3 b} \\ \left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}\right) \\ \hline \end{gathered}$	$\begin{gathered} 82.7 \\ (172) \end{gathered}$	-	-	$\begin{aligned} & \hline 7.25-6.91, \\ & 6.78,6.03 \end{aligned}$
Piperenol (β-Benzoyl propionic acid)	$\begin{gathered} \hline \mathbf{3 c} \\ \left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} 85.4 \\ (166) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 252 \text { (4.12) } \\ & 484(4.46) \end{aligned}$	$\begin{aligned} & 1772 \\ & 1762 \end{aligned}$	$\begin{aligned} & \hline 7.85-6.91, \\ & 6.78,6.03 \end{aligned}$
Piperenol (4-Methoxy β-benzoyl propionic acid)	$\begin{gathered} \mathbf{3 d} \\ \left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}\right) \\ \hline \end{gathered}$	$\begin{gathered} 76.1 \\ (115) \end{gathered}$	-	-	$\begin{aligned} & 7.95-6.90, \\ & 6.70,6.05 \end{aligned}$
Vanillin (β-Benzoyl propionic acid)	$\begin{gathered} \mathbf{3 e} \\ \left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{gathered} 85.6 \\ (147) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 252 \text { (4.18) } \\ & 393 \text { (4.26) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1772 \\ & 1760 \\ & \hline \end{aligned}$	-
Vanillin (4-Methoxy β-benzoyl propionic acid)	$\begin{gathered} \mathbf{3 f} \\ \left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} 72.2 \\ (188) \\ \hline \end{gathered}$	-	-	-
3,4,5-Trimethoxy benzaldehyde (β-Benzoyl propionic acid)	$\begin{gathered} \mathbf{3 g} \\ \left(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{gathered} 88.9 \\ (168) \end{gathered}$	$\begin{aligned} & \hline 249(4.20) \\ & 394(4.03) \\ & 405(4.11) \\ & \hline \end{aligned}$	1765	-
3,4,5-Trimethoxy benzaldehyde (4-Methoxy β-benzoyl propionic acid)	$\begin{gathered} \hline \mathbf{3 h} \\ \left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{5}\right) \\ \hline \end{gathered}$	$\begin{gathered} 84.0 \\ (177) \end{gathered}$	-	-	
Benzaldehyde (β-Benzoyl propionic acid)	$\begin{gathered} \mathbf{3 i} \\ \left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 70.0 \\ (153) \end{gathered}$	$\begin{aligned} & \hline 248 \text { (4.55) } \\ & 390 \text { (3.79) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1792 \\ & 1762 \end{aligned}$	$\begin{gathered} 8.01-7.42 \\ 7.06 \end{gathered}$
Benzaldehyde (4-Methoxy β-benzoyl propionic acid)	$\begin{gathered} \hline \mathbf{3 j} \\ \left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3}\right) \\ \hline \end{gathered}$	$\begin{array}{r} 69.1 \\ (155) \\ \hline \end{array}$	-	-	-

Similarly, the compound 4 was treated with polyphosphoric acid at $100^{\circ} \mathrm{C}$ for 1 h, when same lactone (8) was obtained (Table-4).

Conversion of \propto-arylidene β-benzoyl propionic acid to 1-phenyl naphthalene system (9): \propto-Arylidene β-benzoyl propionic acid (4) was converted to its ester by $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to give methyl \propto-arylidene β-benzoyl propionic acid (6) which was further cyclized by PPA and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ as discussed above when 1-phenyl-3carbomethoxy naphthalene (9) was isolated. The IR indicated presence of aryl ester at $1720 \mathrm{~cm}^{-1}$ (Table-4).

Condensation of $\boldsymbol{\beta}$-benzoyl propionic acid and aryl aldehyde (veratraldehyde):

β-Benzoyl propionic acid (1) and veratraldehyde (2a) were reactived with acetic anhydride and a drop of pyridine for 3 h . The hot reaction mixture was poured in cold water with stirring and then acidified with conc. HCl . The yellow mass obtained was filtered and crystallized with benzene to give \propto-veratralidene (3,4-dimethoxy benzelidene) γ-phenyl- δ, β-butenolide (3a), m.p. $125^{\circ} \mathrm{C}$.

Conversion of \propto-veratralidene γ-phenyl- δ, β-butenolide to \propto-veratralidene $\boldsymbol{\beta}$-benzoyl propionic acid: \propto-Veratralidene γ-phenyl- δ, β-butenolide (3a) was a reacted for 5 h with alcoholic sodium carbonate solution (prepared by dissolving 5 g anhydrous sodium carbonate in 20 mL methanol and 30 mL water). The resulting mixture was filtered cooled and acidified with conc. HCl to get a brown precipitate
which was crystallized with aqueous methanol and was identified as \propto-veratralidene β-benzoyl propionic acid (4a), m.p. $169^{\circ} \mathrm{C}$.

TABLE-2

\propto-Arylidene β-benzoyl propionic acid	eq. wt. Found (req.)	$\text { m.p., }{ }^{\circ} \mathrm{C}$ (m.f.)	$\begin{gathered} \mathrm{UV} \lambda_{\max }, \\ \mathrm{nm}(\log €) \end{gathered}$	$\begin{gathered} \mathrm{IR} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	NMR δ
$\begin{aligned} & (\mathbf{4 a}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \\ & \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} 323 \\ (326) \end{gathered}$	$\begin{gathered} 169 \\ \left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{aligned} & \hline 233(4.70) \\ & 274(3.99) \\ & 398(3.85) \\ & \hline \end{aligned}$	1681	3.65-3.89 (s, 6H), 4.25 (s, 2H, CH_{2}), 6.89-8.10 (m, 8H-olefinic and aromatic proton)
(4b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}=$ $\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$	$\begin{gathered} 349 \\ (356) \\ \hline \end{gathered}$	$\begin{gathered} 192 \\ \left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}\right) \\ \hline \end{gathered}$	-	1681	-
$\begin{aligned} & \text { (4c) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2} \\ & -\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} 307 \\ (310) \end{gathered}$	$\begin{gathered} 203 \\ \left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{aligned} & \hline 237(4.42) \\ & 280(4.13) \\ & 302(4.05) \\ & \hline \end{aligned}$	1682	-
$\begin{aligned} & \text { (4d) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2} \\ & \mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 335 \\ (340) \\ \hline \end{gathered}$	$\begin{gathered} 208 \\ \left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{6}\right) \end{gathered}$	-	1680	-
(4e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=$ $\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	$\begin{gathered} 317 \\ (312) \\ \hline \end{gathered}$	$\begin{gathered} 207 \\ \left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{aligned} & \hline 233(4.39) \\ & 289(4.17) \\ & \hline \end{aligned}$	1681	${ }^{-}$
(4f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=$ $\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$	$\begin{gathered} 339 \\ (342) \end{gathered}$	$\begin{gathered} 211 \\ \left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{6}\right) \end{gathered}$	$\begin{aligned} & 230(4.20) \\ & 290(4.12) \end{aligned}$	1682	3.68 and $3.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.28$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 7.19 (s, 1H, OH) 6.90-8.10 (m, 8H-olefinic and aromatic proton)
$\begin{aligned} & (\mathbf{4 g}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}= \\ & \mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 354 \\ (356) \\ \hline \end{gathered}$	$\begin{gathered} 198 \\ \left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}\right) \\ \hline \end{gathered}$	-	1682	-
$\begin{aligned} & \text { (4h) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3} \\ & =\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{OCH}_{3} \end{aligned}$	$\begin{gathered} 382 \\ (387) \\ \hline \end{gathered}$	$\begin{gathered} 209 \\ \left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{7}\right) \end{gathered}$	-	1685	-
$\begin{aligned} & (4 i) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} 263 \\ (265) \end{gathered}$	$\begin{gathered} 171 \\ \left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{3}\right) \end{gathered}$	$\begin{aligned} & 244(4.45) \\ & 264(4.26) \end{aligned}$	1680	-
$\begin{aligned} & (\mathbf{4 j}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}^{1}=\mathrm{OCH}_{3} \end{aligned}$	$\begin{gathered} 293 \\ (296) \end{gathered}$	$\begin{gathered} 177 \\ \left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{aligned} & \hline 245(4.28) \\ & 275(4.30) \\ & 296(4.05) \\ & \hline \end{aligned}$	1681	-

Conversion of \propto-veratralidene β-benzoyl propionic acid to \propto-veratralidene, $\boldsymbol{\beta}$-methylene, $\boldsymbol{\beta}$-benzoyl propionic acid: To a solution of \propto-veratralidene β-benzoyl propionic acid (4a) in $10 \% \mathrm{aq} . \mathrm{NaOH}$ solution was added 40% formalin solution and was left overnight. It was then cooled and dried with sodium sulphate. Evaporation of solvent gave a gum like solid which was crystallized from benzene petroleum ether and identified as \propto-veratralidene, β-methylene β-benzoyl propionic acid (5a), m.p. $125^{\circ} \mathrm{C}$.

Conversion of \propto-veratralidene β-benzoyl propionic acid to methyl \propto-veratralidene, $\boldsymbol{\beta}$-benzoyl propionic acid: To a suspension of \propto-veratralidene β-benzoyl propionic acid (4a) in ether was added a solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether (it was prepared from 2 g nitrosomethylene and 3 g NaOH , at $0^{\circ} \mathrm{C}$ excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was decomposed by adding glacial acetic acid). The ether solution was washed with water sodium bicarbonate solution and dried (anhydrous sodium sulphate). Evaporation of solvent led to a yellow oil which was crystallized from methanol and identified as methyl \propto-veratralidene β-benzoyl propionic acid (6a), m.p. $96^{\circ} \mathrm{C}$.

TABLE-3

\propto-Arylidene β methylene β-benzoyl propionic acid	eq. wt. Found (req.)	$\begin{gathered} \text { m.p., }{ }^{\circ} \mathrm{C} \\ \text { (m.f.) } \end{gathered}$	$\begin{gathered} \mathrm{UV} \lambda_{\max }, \\ \operatorname{nm}(\log €) \end{gathered}$	$\begin{gathered} \mathrm{IR} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	NMR δ
$\begin{aligned} & (5 a) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \\ & \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} 332 \\ (338) \end{gathered}$	$\begin{gathered} 125 \\ \left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}\right) \end{gathered}$	$\begin{aligned} & 235(4.21) \\ & 282(4.08) \end{aligned}$	1660	3.82 and $3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$ 6.06 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}$) 6.8-8.0 (m, 9 h , aromatic and olefinic protons)
$\begin{aligned} & \text { (5b) } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}= \\ & \mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H} \end{aligned}$	$\begin{gathered} 364 \\ (369) \end{gathered}$	$\begin{gathered} 126 \\ \left(\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{O}_{6}\right) \end{gathered}$	$\begin{aligned} & 240(4.22) \\ & 292(4.08) \end{aligned}$	1680	$\begin{aligned} & \text { 5.99-6.02 (d, 2H, -C+CH2 }), 6.15 \\ & \left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-\right), 6.93-8.0((\mathrm{~m}, \\ & \text { 9h, aromatic and olefinic protons) } \end{aligned}$
$\begin{aligned} & (5 \mathrm{c}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}- \\ & \mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} 317 \\ (322) \end{gathered}$	$\begin{gathered} 201 \\ \left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}\right) \end{gathered}$	$\begin{aligned} & 258(4.67) \\ & 304(4.09) \end{aligned}$	1660	-
$\begin{aligned} & (5 \mathrm{~d}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}- \\ & \mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 335 \\ (337) \\ \hline \end{gathered}$	$\begin{gathered} 198 \\ \left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5}\right) \end{gathered}$	-	1680	-
(5e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=$ $\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	$\begin{gathered} 320 \\ (323) \end{gathered}$	$\begin{gathered} 176 \\ \left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{5}\right) \end{gathered}$	-	1670	-
$\begin{aligned} & \text { (5f) } \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}= \\ & \mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3} \end{aligned}$	$\begin{gathered} \hline 348 \\ (354) \\ \hline \end{gathered}$	$\begin{gathered} 201 \\ \left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}\right) \end{gathered}$	-	1660	-
$\begin{aligned} & (5 \mathrm{~g}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}= \\ & \mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H} \end{aligned}$	$\begin{gathered} \hline 363 \\ (369) \\ \hline \end{gathered}$	$\begin{gathered} 195 \\ \left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6}\right) \end{gathered}$	-	-	-
$\begin{aligned} & (5 \mathrm{~h}) \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}= \\ & \mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{OCH}_{3} \end{aligned}$	$\begin{gathered} 396 \\ (400) \end{gathered}$	$\begin{gathered} 201 \\ \left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{7}\right) \end{gathered}$	-	-	-

Substitutions

a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$
c) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$
e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$
g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{1}=\mathrm{H}$
h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{1}=\mathrm{OCH}_{3}$
i) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
j) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$

Cyclization of \propto-veratralidene β-benzoyl propionic acid with polyphosphoric acid: \propto-Veratralidene β-benzoyl propionic (4a) acid was refluxed with PPA at $100^{\circ} \mathrm{C}$ for 1 h . The mixture was poured on crushed ice when the solid precipitated. It was crystallized with aq. ethanol and identified as 1-phenyl-6,7-dimethoxy naphthoic $\operatorname{acid}(7 a)$, m.p. $217^{\circ} \mathrm{C}$.

Cyclization with conc. $\mathbf{H}_{2} \mathrm{SO}_{4}: \propto$-Veratralidene β-benzoyl propionic acid (4a) was treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$ for 24 h . The solution was poured in crushed ice, when precipitate separated which was crystallized from benzene pet. ether and identified as 1-phenyl-6,7-dimethoxy naphthoic acid (7a), m.p. $217{ }^{\circ} \mathrm{C}$.

Lactone	$\begin{aligned} & \text { eq. wt. } \\ & \text { Found } \\ & \text { Foun.) } \\ & \hline \end{aligned}$	$\underset{\left({ }^{\circ} \mathrm{c} \cdot \mathrm{p}\right)}{ }$	m.f.	$\underset{(\log €)}{\mathrm{UV} \lambda_{\text {max }} \mathrm{nm}}$	$\underset{\left(\mathrm{cm}^{-1}\right)}{\mathrm{IR}}$	NMR δ
(7a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	305 (308)	217	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{aligned} & 235(4.21) \\ & 282(4.08) \end{aligned}$	1680	3.8 and $4.0\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 7.2\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 7.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.43-7.85(\mathrm{~m}$, 5 H, phenyl) and $8.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$
(7b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$	320 (322)	179	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	$\begin{aligned} & 240(4.30) \\ & 288(4.18) \end{aligned}$	1682	-
(7c) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	303 (304)	240	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{4}$	$\begin{aligned} & 238(4.25) \\ & 282(4.10) \end{aligned}$	1680	-
(7d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$	315 (318)	242	$\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{O}_{4}$		1680	- -
(7e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	291 (294)	179	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$		1681	$4.1\left(\mathrm{~s}, 10 \mathrm{CH}_{3}\right), 4.5\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}\right.$, aromatic protons), $7.0\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 7.0-8.8(\mathrm{~m}$, aromatic-protons), $7.5(\mathrm{~m}, 5 \mathrm{H}$, phenyl)
(7f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$	322 (324)	212	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$		1680	-
(7g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H}$	333 (336)	223	$\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{O}_{5}$		1683	3.8-3.9,3.95 (s, 9H, 30CH ${ }_{3}$), 6.5-8.5 (m, aromatic protons), 7.5 (m, 5 H , phenyl)
(7h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3} \mathrm{R}^{1}=\mathrm{OCH}_{3}$	366 (368)	216	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$		1680	
(8a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$		205	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{aligned} & 258 \text { (4.69) } \\ & 314(4.02) \end{aligned}$	1760	3.85 and $4.06\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}\right.$, lactone $\left.\mathrm{CH}_{2}\right), 7.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 7.37$ (s, $1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), 7.6 (br. s, 5 H , phenyl) and 8.36 (s, H, C $\mathrm{C}_{4}-\mathrm{H}$)
(8b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$		230	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}$	$\begin{aligned} & 260(4.71) \\ & 320(4.12) \end{aligned}$	1761	3.90, 4.01, $4.25\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{OCH}_{3}\right), 5.30\left(\mathrm{~s}, 2 \mathrm{H}\right.$, lactone $\left.\mathrm{CH}_{2}\right), 7.1-7.7(\mathrm{~m}, 6 \mathrm{H}$, aromatic), $8.4\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$
(8c) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	-	211	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{4}$	$\begin{aligned} & 258(4.60) \\ & 312(4.12) \end{aligned}$	1762	5.23 ($\mathrm{s}, 2 \mathrm{H}$, lactone CH_{2}), $6.10\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}\right), 7.13-7.4$ (d, 6 H aromatic), 8.28 ($\mathrm{s}, \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$)
(8d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$	-	215	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}$		1763	
(8e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	-	210	$\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{O}_{4}$		1761	$3.83\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{OCH}_{3}\right), 5.20\left(\mathrm{~s}, 2 \mathrm{H}\right.$, lactone $\left.\mathrm{CH}_{2}\right), 7.04,7.30(\mathrm{~m}, 7 \mathrm{H}$ and $1 \mathrm{H}, \mathrm{OH}$ aromatic), $8.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$
(8f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$	-	220	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{5}$	-	1761	
(8g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H}$	-	235	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{5}$		1762	3.90, $4.01,4.25\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{OCH}_{3}\right), 5.30\left(\mathrm{~s}, 2 \mathrm{H}\right.$, lactone $\left.\mathrm{CH}_{2}\right), 7.1-7.7(\mathrm{~m}, 6 \mathrm{H}$,
(8h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$	-	240	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{6}$	-	-	- -
(9a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$	-	124	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}$	$\begin{aligned} & 257(4.71) \\ & 306(4.05) \end{aligned}$	1720	$\begin{aligned} & \left.3.85,3.96,4.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 7.24 \text { and } 7.30(\mathrm{~s}, \mathrm{sh}), \mathrm{C}_{3}-\mathrm{H} \text { and } \mathrm{C}_{8}-\mathrm{H}\right), \\ & 7.85\left(\mathrm{~s}, \text { sh, phenyl) } 7.9\left(\mathrm{~d}, J=2 \mathrm{H}_{2}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 8.47\left(\mathrm{~d}, J=2 \mathrm{H}_{2}, \mathrm{C}_{2}-\mathrm{H}\right)\right. \end{aligned}$
(9b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}^{1}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$		126	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{5}$		1720	-02 ${ }^{\text {c }}$ -
(9c) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{H}$	-	171	$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{4}$	$\begin{aligned} & 258 \text { (4.67) } \\ & 304(4.09) \\ & 342(3.51) \end{aligned}$	1720	$\left.\left.4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.94\right) \mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}-\right), 7.32$ and 7.38 (5 (sh) $2 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}^{2}$ and $\mathrm{C}_{8}-$ $\mathrm{H}), 7.60\left(\mathrm{~s}\right.$, sh, phenyl), $8.04\left(\mathrm{~d}, J=2, \mathrm{H}_{2}, 1 \mathrm{H}, 2 \mathrm{H}\right)$ and $8.86\left(\mathrm{~d}, J=2 \mathrm{H}_{2}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$
(9d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{\mathrm{l}}=\mathrm{OCH}_{3}$	-	182	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5}$	$\begin{aligned} & 260(4.91) \\ & 308(3.39) \end{aligned}$	1720	-
(9e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$		152	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{4}$		1720	-
(9f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$	-	163	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}$	-	1720	-
(9g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H}$		132	$\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{O}_{5}$		1720	-
(9h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$		136	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{6}$		1720	

Cyclization of \propto-veratralidene $\boldsymbol{\beta}$-methylene $\boldsymbol{\beta}$-benzoyl propionic acid with polyphosphoric acid: \propto-Veratralidene, β-methylene β-benzoyl propionic acid (5a) was refluxed with PPA at $100^{\circ} \mathrm{C}$ for 1 h . The mixture was poured on crushed ice when the solid precipitated. It was crystallized with aq. ethanol and identified as 1-veratryl naphthalene-3-carboxylic acid lactone (8a), m.p. $205^{\circ} \mathrm{C}$.

Cyclization with conc. $\mathbf{H}_{2} \mathrm{SO}_{4}: \propto$-Veratralidene, β-methylene β-benzoyl propionic acid (5a) was treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$ for 24 h . The solution was poured in crushed ice, when precipitate separated which was crystallized from benzene pet. ether and identified as 1-veratryl naphthalene-3-carboxylic acid lactone (8a), m.p. $205^{\circ} \mathrm{C}$.

Cyclization of methyl \propto-veratralidene $\boldsymbol{\beta}$-benzoyl propionic acid with polyphosphoric acid: Methyl \propto-veratralidene β-benzoyl propionic acid (6a) was refluxed with PPA at $100^{\circ} \mathrm{C}$ for 1 h . The mixture was poured on crushed ice when the solid precipitated. It was crystallized with aq. ethanol and identified as 1-phenyl-3-carbomethoxy-6,7-dimethoxy naphthalene (9a), m.p. $124^{\circ} \mathrm{C}$.

Cyclization with conc. $\mathbf{H}_{2} \mathrm{SO}_{4}$: Methyl \propto-veratralidene β-benzoyl propionic acid (6a) was treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$ for 24 h . The solution was poured in crushed ice, when precipitate separated which was crystallized from benzene pet. ether and identified as 1-phenyl 3-carbomethoxy, 6-7-dimethoxy naphthalene (9a), m.p. $124^{\circ} \mathrm{C}$.

Substitutions

a) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
b) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R} 1=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$
c) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
d) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$
e) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
f) $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}^{1}=\mathrm{OCH}_{3}$
g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{H}$
h) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$
i) $R_{1}=R_{2}=R_{3}=H, R^{1}=H$
j) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{OCH}_{3}$

RESULTS AND DISCUSSION

Perkin condensation of β-benzoyl propionic acid (1) with aryl aldehyde (2) yielded butenolide ${ }^{5}(\mathbf{3})$ which finally lead to \propto-arylidene β-benzoyl propionic acid ${ }^{6}$ (4). The system thus obtained contained the required skeleton to prepare pericarbonyl lactone and 1-phenyl naphthalene system.
α-Arylidene β-benzoyl propionic acid (4) was treated with different reagents like $\mathrm{CH}_{2} \mathrm{~N}_{2}$ and formalin to get its ester and formylated products $\mathbf{5}$ and $\mathbf{6}$, respectively.

Earlier attempts ${ }^{7}$ to prepare pericarbonyl lactone system ${ }^{8}$ from 5 were attempted in two steps. In the first step, $\mathbf{5}$ was cyclized by acetic acid and hydrochloric
acid and the cyclized product obtained from $\mathbf{5}$ was hydrolyzed followed by treatment with hydrochloric acid to get 1-phenyl 3-carboxylic acid lactone (8).

However, the synthesis of pericarbonyl lactone from 5 was achieved in one step with polyphosphoric acid and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ which were found to be remarkable cyclization reagents in these reactions. With the view to cyclize α-arylidene β-benzoyl propionic acid (4) and its derivatives α-arylidene β-methylene β-benzoyl propionic acid (5) and methyl \propto-arylidene β-benzoyl propionic acid (6), they were treated with polyphosphoric acid (PPA) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Conclusion

The synthesis of pericarbonyl lactone (8) from (5) was achieved in one step with polyphosphoric acid and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ which were found to be remarkable cyclization reagents in these reactions. In system (5) there is hyperconjugation at CH_{2}. And cyclization takes place by keto-enol tautomerism. The aromatic atmosphere spread is more on s-cis butadiene than s-trans orientation. Though the s-trans is more, stable here s-cis has more chance to exit. Hence the facile cyclization via keto-enol tautomerization which in turn existed due to hyperconjugation which is possible due to methylene. All these intermediate structures drives the reaction towards aryl lactonization via cyclization, by removal of H and OH and simultaneous tautomerism at the COOH and CH positive centre. The above discussion leads to formation of pericorbonyl lactone (8). The synthesis of 7 from $\mathbf{4}$ and 9 from 6 takes place involving keto-enol tautomerism followed by removal of H and OH.

ACKNOWLEDGEMENTS

The authors are greatful to Dr. M.M. Gadegone, Director, Institute of Science, Nagpur for providing the necessary research facilities. Thanks are also due to C.S.I.R. for spectral analysis.

REFERENCES

1. S.P.B. Ovenden, J. Yu, S.S. Wan, G. Sberna, R.M. Tait, D. Rhodes, S. Cox, J. Coates, N.G. Walsh and B.M. Meurer-Grimes, Phytochemistry, 65, 3255 (2004).
2. R.D. Haworth and G. Sheldrick, J. Chem. Soc., (1935).
3. R. Stevenson and E. Block, J. Chem. Soc., 711 (1971).
4. C. David, Harrowven, Mark Bradley, J Lois Castro and Stuart R Flanagan, Tetrahedron Lett., 42, (2001).
5. A.I. Scott, Pergamon Press, London, p. 79 (1969).
6. V.R. Pasarkar, Ph.D. Thesis, Nagpur University, India (1977).
7. S. Takano, S. Otaki and K. Oyasawara, Tetrahedron Lett., 26, (1985).
8. P.W. Agnihotri, V.R. Pasarkar and G. Bagawant, J. Indian Chem. Soc., 59, 869 (1982).
