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Wood samples from brutian pine (Pinus brutia Ten.) were delignified

at different temperatures and different times to generate holocellulose

samples of varying residual lignin content. Fourier transform infrared

(FTIR) spectra of holocellulose samples were studied in the range of

4000-400 cm-1 at a resolution of 4 cm-1. The spectral bands at 1508,

1421, 1372, 1265, 1158, 1054 and 1030 cm-1 were used for estimating

residual lignin content in the holocellulose samples. Artificial neural

network (ANN) modelling was used to predict the amount of residual

lignin from FTIR spectral data of holocelluloses. Artificial neural networks

trained by Levenberg-Marquardt algorithm were applied for constructing

and optimizing calibration models using MATLAB software. For four

hidden neurons, three layered ANN model was scored an average relative

error of prediction skill of 0.58 %.

Key Words: Residual lignin, Holocellulose, FT-IR, Artificial neural

network.

INTRODUCTION

Lignin, a natural complex biopolymer found in wood, is built up of

phenylpropane units. Softwood lignins tend to consist mainly of guaiacyl units

with minor amounts of syringyl and p-hydroxyphenylpropane units, whereas hard-

wood lignins tend to be composed of guaiacyl and syringyl units with a small portion

of p-hydroxyphenylpropane units. With a contribution between 20-32 % of wood,

lignin is the second most abundant biomass in the plant world after cellulose1,2.

Delignification is a process to remove the lignin from wood. Holocellulose is

the product after delignification of wood. An ideal delignification should be result

in a total removing of lignin without effecting hemicelluloses and cellulose, but

there is no delignification technique which can perform this requirement. There-

fore, low residual lignin content and minimal loss of hemicelluloses and cellulose

in the holocellulose are expectations from delignification of wood1.

In the laboratory, chemical methods are applied for direct determination of

lignin content, although these methods are laborious and time-consuming. Therefore,

methods which can be used easily and cost effective are preferred for measuring



lignin content. For rapid estimation of lignin content, fourier transform infrared

(FT-IR) spectroscopy. Calibrated FTIR measurements are able to give quantitative

information about lignin content of wood or woodpulp samples3-7.

Artificial neural networks (ANNs) are computer based processing models which

have a connected structure similar to brain cells. Theoretical background information

on ANNs and the applications of ANNs for different systems have been published8-12.

The applications of ANN for FTIR spectroscopic studies can also be found in the

literature13-17. An ANN is composed of interconnected processing neurons or nodes

organised in layers i.e., input, hidden and output. The interconnections of neurons

are quantified with connection weights which can be modified during the training

step of ANN. The behaviour of ANN structure is determined by an activation function

and a back propagation algorithm used for weights optimization. The connection

weights are adapted to minimize the error between the target data values and their

predicted data values by the neural network. Once the weights have been determined,

the performance of the network is checked on a test set for determining the network's

accuracy in predicting unprocessed data sets. For various networks constructed

with different numbers of hidden layers and hidden neurons, the training and testing

processes are repeated until minimum error value is obtained18,19.

In the present work, a typical softwood, brutian pine (Pinus brutia Ten.) was

chosen. Since application of different delignifying conditions in the acid chlorite

process20 can change residual lignin content21, brutian pine wood was delignified

using acid chlorite treatment at different temperatures and time periods to maximize

the range of residual lignin content in holocelluloses. FTIR spectra from

holocelluloses were collected and from these spectra, the rapid estimating residual

lignin content was aimed using ANN modelling.

EXPERIMENTAL

The wood material was milled in a Retsch SK 1 mill. Buchi extraction system

B-811 was used for the alcohol extractions of wood sample, Perkin-Elmer Lambda

20 UV/VIS spectrometer for the absorbance value measurements and Perkin Elmer

BX FTIR spectrometer for recording of the IR spectra.

Cyclohexane, ethanol, acetic acid, acetone, perchloric acid, sodium hydroxide

and KBr for IR spectroscopy were purchased from Merck. Sodium chlorite and

acetyl bromide were obtained from Fluka.

Procedure: The brutian pine (Pinus brutia Ten.) wood sample for analyses

was milled to pass 40-100 mesh. The milled wood material was primary extracted

with 2:1 cyclohexane:ethanol and secondary with ethanol. The extracted wood

sample was further pulverized using agat mortar and pestle to have particle size

from 20-45 µm.

For delignifying of the pulverized wood material, the acid chlorite procedure

of Browning20 was adapted. 200 mg of pulverized wood sample (on oven dry basis)

was placed in 50 mL flask and 32 mL of distilled water, 0.05 mL glacial acetic acid
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and 0.15 g of sodium chlorite were added. Various numbers of the mentioned flask

were heated at different temperatures and different times. The time periods were

started at 15 min and continued with 15 min intervals to 330 min at a temperature

of 70 °C. The same procedure was applied with 30 min intervals at a temperature of

50 °C. When the heating exceeded 30 min, acetic acid and sodium chlorite were

added to the reaction mixture and it was repeated after each additional 30 min

interval. At the end of each delignification period, the flask was cooled in an ice-bath.

Holocellulose (delignified wood) in the flasks were filtered in G-3 crucibles with a

light vacuum, washed with cold distilled water and acetone and air-dried.

10 mg of the each holocellulose sample (on oven dry basis) was dispersed in a

matrix of 1000 mg KBr, followed by compression of 8 t to form self-supporting

pellets. FTIR spectra of the samples were recorded at room temperature. Five scans

per sample, totally 165 scans, were collected over the range 4000-400 cm-1 with a

spectral resolution of 4 cm-1.

Residual lignin content of each holocellulose sample was determined by acetyl

bromide procedure from Liyama and Wallis22. 5 mg of sample (on oven dry basis)

was digested with 2.5 mL of a mixture of acetyl bromide and acetic acid (25:75, w/w)

and 0.1 mL of 70 % perchloric acid at the temperature of 70 °C for 0.5 h. After

digestion, the solution was cooled and transferred to a 50 mL volumetric flask that

contained 10 mL of 2 N sodium hydroxide and 12 mL of acetic acid. The solution

was made up to 50 mL with acetic acid. A blank was prepared from the same

solution without the 5 mg of sample. The absorbance values of solution and blank

were measured at 280 nm. The residual lignin content was calculated from the

blank-substracted absorbance value and a specific absorption coefficient of 20 L g-1

cm-1 and expressed in percentage of dry sample weight (w/w) for hemicelluloses.

The determination of residual lignin content was carried out in duplicate for each

sample.

Methodology: The training of ANN was carried out using MATLAB software.

The ANN experiments used backpropagation with the Levenberg-Marquardt algor-

ithm for adjusting the weights of networks. For this neural network modelling an

input layer, a hidden layer and an output layer were constructed. The inputs consisted

of seven neurons in the input layer which were intensities of the bands at 1508,

1421, 1372, 1265, 1158, 1054 and 1030 cm-1 from the FTIR spectra. These bands

were chosen based on previous work by Silva et al.7, where they were found to be

informative for rapid determination of softwood lignin content. Baseline for each

FTIR spectrum was corrected and defined by connecting the absorbance value at

1876 and 832 cm-1. The intensity of each selected band was obtained by measuring

the peak height defined as absorbance value difference between the band maximum

and the baseline. Average band intensities for 5 scans of each holocellulose sample

were evaluated. A neuron which was the residual lignin content was used as the

output layer (Fig. 1). Neural networks were trained using different number of hidden

neurons.
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Fig. 1. Network architecture used in the fourier transform infrared (FTIR) spectroscopic

method for estimation of residual lignin content

The 33 data pairs were divided randomly into three sets. Each data pair consists

of the intensities of the bands at 1508, 1421, 1372, 1265, 1158, 1054 and 1030 cm-1

from FTIR spectra and the residual lignin content, as input and output variables for

ANN, respectively. Twenty two data pairs were used for training and 7 data pairs

for testing. Four data pairs were used to show validation of the selected ANN model

(Table-1).

TABLE-1 
TRAINING, TESTING AND VALIDATION DATA SETS FOR ANN 

Sample DT (min) DT* (ºC) Data set Sample DT (min) DT* (ºC) Data set 

1 15 70 Training 18 180 50 Validation 

2 30 70 Testing 19 195 70 Training 

3 30 50 Training 20 210 70 Training 

4 45 70 Training 21 210 50 Training 

5 60 70 Training 22 225 70 Testing 

6 60 50 Validation 23 240 70 Training 

7 75 70 Testing 24 240 50 Testing 

8 90 70 Training 25 255 70 Training 

9 90 50 Training 26 270 70 Training 

10 105 70 Training 27 270 50 Training 

11 120 70 Training 28 285 70 Training 

12 120 50 Testing 29 300 70 Validation 

13 135 70 Testing 30 300 50 Training 

14 150 70 Training 31 315 70 Testing 

15 150 50 Training 32 330 70 Training 

16 165 70 Training 33 330 50 Training 

17 180 70 Validation – – – – 

DT = Delignification time; DT* = Delignification temperature. 
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When the logistic function was used as the activation function in a network,

data should be normalized, so all data were normalized into a range 0.1-0.9 using

the following equation:
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where XN is the normalized value of the input or the output data, X is original value

of the data and Xmax and Xmin are the maximum and the minimum original values of

the data. After training, the neural network was tested by introducing the test data

set. Actual data (targets) were then compared with produced data by the network. If

the network predicted data were in close agreement with actual data, then network

topology was accepted. If it was not in agreement, the training process was repeated.

The overall performance of the ANNs was evaluated in terms of root mean square

(RMS) error according to the following equation:
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where N is the number of data, X'i is the target value and Xi is the output value

produced by the network.

RESULTS AND DISCUSSION

In the FTIR measurements, although the band at 1508 cm-1 is characteristic to

only lignin4,23-26, because of different ratios of carbohydrates, the intensities of the

bands at 1421, 1372, 1265, 1158, 1054 and 1030 cm-1 are affected7. All these pure

lignin and carbohydrate affected bands (Fig. 2) were used as inputs which are inde-

pendent variables for the performed neural network models.

Fig. 2. FTIR spectrum of the brutian pine (Pinus brutia Ten.) 1: 1508 cm-1, 2: 1421 cm-1,

3: 1372 cm-1, 4:1265 cm-1, 5: 1158 cm-1, 6: 1054 cm-1, 7: 1030 cm-1
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The residual lignin contents of the holocellulose samples, between 15-330 min,

are shown in Fig. 3. In the figure, the residual lignin content of each sample was

expressed in percentage of dry sample weight (w/w). These values of the residual

lignin contents were the output variables of neural networks. The residual lignin

content values were varied between 6.51-26.52 %, 8.27-25.75 % and 9.32-25.13 %

for the training, testing and validation of ANN, respectively.
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Fig. 3. Residual lignin contents (% dry matter) of the holocelluloses from brutian pine

(Pinus brutia Ten.)

The neural network models with logistic function were trained and tested. The

number of hidden neurons of the network was determined by evaluating the perfor-

mance defined by RMS error of the network models (Table-2). The NN2 model

with 4 hidden neurons was chosen to predict the residual lignin content because the

RMS error for testing data set was the lowest value.

TABLE-2 
COMPARISON OF THE PERFORMANCES OF THE NEURAL NETWORK MODELS 

RMS error 

Residual lignin 
Model 

Training Testing 

NN1 7-3-1 0.022512 0.049672 

NN2 7-4-1 0.010182 0.014216 

NN3 7-5-1 0.010413 0.031405 

NN4 7-6-1 0.010865 0.047836 

NN5 7-7-1 0.004599 0.075956 

 

The predicted values of residual lignin content from the NN2 model and the

actual (target) values are shown in Fig. 4 for the training and testing data set by

linear regression. The results showed that agreement between the predicted and the

actual residual lignin contents was excellent with correlation R2 values of 0.9982

and 0.9963, respectively.
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R2 = 0.9982
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Fig. 4. The prediction performances of NN2 model for residual lignin training and testing

data set

The experimental data pairs of brutian pine were used for validation step of

model NN2. This run for validation is listed in Table-3. All of the predicted values

were very close to actual values with an average per cent relative error of 0.58. It

was therefore found that ANN can be used to successfully predict residual lignin

content.

TABLE-3 
PREDICTION OF VALIDATION DATA SET BY NN2 MODEL 

Residual lignin (%) Delignification temperature 
and period Actual Predicted RE % 

70 ºC , 180 min 17.15 17.25 0.58 

70 ºC , 300 min 9.32 9.38 0.64 
50 ºC , 60 min 25.13 25.24 0.44 
50 ºC, 180 min 20.14 20.27 0.65 

 

Conclusion

A three-layered ANN model was developed and tested for its ability to estimate

the residual lignin content of wood samples taken from brutian pine (Pinus brutia

Ten.). Samples were derived by delignifying at different temperatures and different

times. Residual lignin contents of the holocellulose (delignified wood) samples

were used as output variables for ANN. Input variables were the band intensities at

1508, 1421, 1372, 1265, 1158, 1054 and 1030 cm-1, taken from the FTIR spectra of

the holocellulose samples. It was shown that the ANN could reliably predict residual

lignin content with high correlation R2 values (0.9982 and 0.9963) between actual

and predicted values of the training and testing sets, as well as with a small average

prediction error (0.58 %) between actual and predicted values of a validation set.
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