Asian Journal of Chemistry

Fourier Transform ¹H NMR and IR Spectra of Novel O-Aryl-O-ethyl-2-chloroethyl Phosphonates

ATULYA KUMAR PANDA Department of Chemistry, University of Delhi, Delhi-110 007, India E-mail: atulyapanda@rediffmail.com

Fifteen novel O-aryl-O-ethyl-2-chloroethyl phosphonates with their FT-¹H NMR and IR spectral data are reported.

Key Words: O-Aryl-O-ethyl-2-chloroethyl phosphonates, $^1\!\mathrm{H}\,\mathrm{NMR},$ IR Spectra.

INTRODUCTION

Organophosphorus compounds have added attractions because of their widespread use as pesticides, insecticides and nerve gases^{1,2}. The proton magnetic resonance spectra of organophosphorus compounds exhibit a characteristic feature of splitting the signals of the protons proximate to phosphorus atom. This is because phosphorus present³ in nature in 100 % abundance as ³¹P with the spin quantum number ¹/₂. Infrared spectroscopy also gives characteristic peaks⁴ for the identification of organophosphorus compounds. Recently, we have synthesized a series of novel O-ethyl-O-aryl-2-chloroethyl phosphonates which showed good fungitoxicity⁵ and nematotoxicity⁶. Herein, the detailed ¹H NMR and IR spectra of these compounds are reported.

EXPERIMENTAL

The phosphonates (1-15) were synthesized by condensing 2-chloroethyl phosphonyl chloride first with ethanol followed by substituted phenols in the presence of triethyl amine⁵. The ¹H NMR spectra were recorded on a Varian EM-360L,60 MHz instrument using CCl₄ as solvent with TMS as internal standard (chemical shifts in δ ppm and *J* values in Hz). The IR spectra were obtained by a Perkin-Elmer 457 spectrophotometer (liquid samples as liquid film or in CCl₄ and solid samples in KBr discs).

RESULTS AND DISCUSSION

The ¹H NMR spectra of 2-chloroethyl phosphonyl chloride (precursor of the prepared phosphonates 1-15) showed two doublets of triplets at 3.2 and 3.95 δ accounting for O=P-CH₂ and Cl-CH₂, respectively. Both these doublets have coupling constants 16 Hz and 8 Hz for H-P coupling and H-H coupling, respectively. When the two chlorine atoms of 2-chloroethyl phosphonyl chloride were replaced by

2812 Panda

O-ethyl and O-phenyl groups, as in case of phosphonate **1**, the coupling constant ${}^{2}J_{\text{H-P}}$ increases by 2 units and ${}^{3}J_{\text{H-P}}$ by 4 units. ${}^{3}J_{\text{H-P}}$ is further increased by 6-10 units in case of more -I groups introduced in the phenolic moieties as in other phosphonates **2-15**. Table-1 shows the comparison between the coupling constants of the phosphonates and their precursor.

The ¹H NMR chemical shifts and coupling constants of various protons are presented in Table-2. The coupling constants ${}^{2}J_{\text{H-P}}$ and ${}^{3}J_{\text{H-H}}$ are found to be 18-19 Hz and 8 Hz, respectively for all the phosphonates, but ${}^{3}J_{\text{H-P}}$ for compound 11 (R=2-Cl,4-NO₂) and 13 (R=2,4,5-Cl₃) is found to be 22 Hz and that for **14** (R=2,4,6-Cl₃) is 24 Hz (Table-2). This is further increased in case of **15** (R=Cl₅) where the coupling constant is 26 Hz. In earlier report⁷, in case of O,O-*bis*-aryl isopropyl phosphonates, ${}^{3}J_{\text{H-P}}$ was in the range of 19.5-21.5, whereas in present case it increases up to 24 Hz which is a new observation. These enhanced coupling constants with electron withdrawing substituents in the phosphonates can be explained by the theory proposed by Hendrickson *et al*³.

The FT IR spectra of the synthesized phosphonates are given in Table-3, which shows the presence of all the peaks corresponding to P-O-alkyl, PO-alkyl, P-O-aryl, PO-aryl, P=O and P-CH₂ stretching frequencies apart from other expected peaks.

The P-O alkyl stretching showed absorbance at 818-887 cm⁻¹. In most of the cases, there are strong peaks, but a few of them have medium intensities. The compound **7** (R=2-Cl) and **11** (R=2-Cl,4-NO₂) showed weak peaks at 825 cm⁻¹. All the compounds showed strong peaks for PO-alkyl stretching at 1024-1051 cm⁻¹. In case of compounds **9** (R=3,4-Me₂), **10** (R=3-Me, 4-Cl) and **11** (R=2-Cl,4-NO₂), strangely there are two peaks at 1038 and 1051 cm⁻¹. Because of the intensities of both the peaks were found to be strong, it was undetermined to assign which peak is for PO-alkyl stretching. Same case was also observed in case of **14** (R = 2,4,6-Cl₃) where it came at 1025 and 1064 cm⁻¹ both having strong intensities.

The P-O-aryl stretching was observed at 985-923 as mostly strong peaks. In earlier report⁸, P-O, O-*bis*-aryl stretching was observed at 950-910 cm⁻¹. Hence it was concluded that P-O-aryl bond was stronger in case of present series as compared to the previous one.

Vol. 22, No. 4 (2010)

Fourier Transform ¹H NMR and IR Spectra of Phosphonates 2813

TABLE-2 ¹H NMR SPECTRAL DATA OF O-CH₂CH₃ CI-CH₂-CH₂-CH₂-CH₂ (1-15)

		δValues							
	R		Cl-CH ₂ CH ₂ -	OCH	Cl-CH ₂ CH ₂ -				
Com. No.		-OCH ₂ CH ₃ (3H, t, <i>J</i> =8 Hz)	P=O-	$-0CH_2$ -	P=O-		Others		
			(2H,d, t)(J	(2H a	(2H,d, t)(J	-O-Ar			
			values are in	$(211, q, L-8 H_7)$	values are in				
			Parentheses)	J=0 112)	parentheses)				
1	Н	1.28	2.40	3 82	4.05	7.38			
			(18Hz, 8Hz)	5.62	(20Hz, 8Hz)	(5H,s)	-		
2	4-Me	1.29	2.40	3 78	4.02	7.22	2.32(3H,s,		
			(18Hz, 8Hz)	5.76	(20Hz, 8Hz)	(4H,s)	Ar-Me)		
3	4 – C (Me) ₃	1.28	2.40	3 78	4.05	7.34	1.32(9H,s,		
			(18Hz, 8Hz)	5.70	(20Hz, 8Hz)	(4H,dd, <i>J</i> =9Hz)	$Ph-CMe_3$)		
4	4-OMe	1.28	2.38	3 74	4.00	7.02	3.80(3H,s,		
			(18Hz, 8Hz)	5.74	(20Hz, 8Hz)	(4H,dd, <i>J</i> =9Hz)	Ph-O-Me)		
5	2-NO ₂	1.36	2.56	3 88	4.12	7.8			
			(19Hz, 8Hz)	5.00	(20Hz, 8Hz)	(4H,m)	-		
6	4-NO ₂	1.34	2.52	3.86	4.10	7.6			
U			(19Hz, 8Hz)		(20Hz, 8Hz)	(4H,m)	-		
7	2-Cl	1.32	2.50	3.82	4.02	7.45			
'			(18Hz, 8Hz)		(20Hz, 8Hz)	(4H,m)	-		
8	4-Cl	1.28	2.40	3.70	4.02	7.32			
			(18Hz, 8Hz)		(20Hz, 8Hz)	(4H,dd, <i>J</i> =9Hz)	-		
0	3,4-Me ₂	1.28	2.30	3 78	4.02	7.08	2.28(6H,s,		
,			(18Hz, 8Hz)	5.70	(20Hz, 8Hz)	(3H,m)	$Ar-Me_2$)		
10	3-Me,4-Cl	1.30	2.36	3 78	4.02	7.2	2.38(3H,s,		
10			(18Hz, 8Hz)	5.70	(20Hz, 8Hz)	(3H,m)	Ar-Me)		
11	2-Cl,4-NO ₂	1.42	2.62	3 82	4.20	8.15			
			(19Hz, 8Hz)	5.62	(22Hz, 8Hz)	(3H,m)	-		
12	2,4-Cl ₂	1.34	2.52	3.86	4.10	7.45			
14			(19Hz, 8Hz)		(20Hz, 8Hz)	(3H,m)	_		
13	2,4,5-Cl ₃	1.36	2.52	3 76	4.10	7.68(1H,s) &			
15			(19Hz, 8Hz)	5.70	(22Hz, 8Hz)	7.74(1H,s)	_		
14	2,4,6-Cl ₃	1.36	2.66	3 88	4.18	7.50			
			(19Hz, 8Hz)	5.00	(24Hz, 8Hz)	(2H,s)	_		
15	Cl ₅	1.42	2.72	3.88	4.18				
15			(19Hz, 8Hz)		(26Hz, 8Hz)	-	-		

The PO-aryl stretching was observed at 1235-1202 cm⁻¹ as strong peaks which is comparable with 1240-1200 cm⁻¹ in case of previous series⁸. The most common P=O stretching was observed at 1268-1249 cm⁻¹ all as strong peaks.

Another important vibration namely P-CH₂ stretching occurred at 1400 cm⁻¹ in all the cases except 9 (R=3, 4-Me₂) where it was observed at 1406 cm⁻¹. All these

2814 Panda

Asian J. Chem.

peaks were having either medium or weak intensities. Apart from all these vibrations due to phosphorus nucleus, the aromatic C=C, aliphatic C-H and C-Cl stretching frequencies were observed at usual positions as shown in Table-2, but both the symmetric and asymmetric N-O stretching vibrations for NO_2 group substituted compounds were observed as medium or weak peaks.

0		M	Stretching vibrations (cm ⁻¹)									
omp. No.	R	edium	P- Oalkyl	PO- alkyl	P- Oaryl	PO- Aryl	P=O	P-CH ₂	Aromatic (C=C)	С-Н	C-Cl	Others
1	Н	LF	825.8 (m)	1024.9 (w)	926.5 (s)	1214.8 (s)	1262.9 (s)	1400.4 (m)	1489.4(s) 1592.3(m)	2927.2	765.4 (s)	-
2	4-Me	LF	825.8 (s)	1045.6 (s)	943.1 (s)	1216.0 (s)	1254.7 (s)	1400.4 (m)	1506.7(s) 1609.3(w)	2983.0	764.5 (m)	-
3	4-C(Me) ₃	LF	840.9 (s)	1044.9 (s)	941.9 (s)	1218.1 (s)	1256.3 (s)	1400.4 (m)	1508.8(s) 1604.4(w)	2963.7	781.1 (m)	-
4	4-OMe	LF	834.4 (s)	1051.6 (s)	952.8 (s)	1202.9 (s)	1254.8 (s)	1400.4 (m)	1505.7(s) 1604.4(w)	2979.9	729.1 (m)	-
5	2-NO ₂	LF	834.4 (m)	1038.4 (s)	952.8 (s)	1202.9 (s)	1249.0 (s)	1400.4 (m)	1505.7(w) 1605.8(w)	2987.0	781.1 (m)	1340.1(m) 1570.2(w)
6	4-NO ₂	CCl_4	825.8 (s)	1038.4 (w)	952.8 (w)	1202.9 (s)	1249.0 (s)	1400.4 (w)	1518.8(m) 1604.4(w)	2966.7	765.4 (s)	1356.2(m) 1570.2(w)
7	2-Cl	LF	825.8 (w)	1038.4 (s)	926.5 (s)	1235.8 (s)	1254.6 (s)	1400.4 (w)	1479.3(s) 1584.6(w)	2993.1	768.6 (m)	_
8	4-Cl	LF	841.0 (s)	1038.4 (w)	933.1 (s)	1216.1 (s)	1254.6 (s)	1400.4 (s)	1485.9(s) 1597.8(m)	2979.9	781.7 (s)	_
9	3,4-Me ₂	LF	887.0 (s)	1038.4(s) 1051.6(s)	966.0 (s)	1202.9 (s)	1255.6 (s)	1406.9 (m)	1505.7(m) 1617.6(w)	2979.9	764.5 (w)	_
10	3-Me,4-Cl	CCl ₄	854.1 (m)	1038.6(s) 1051.6(s)	972.6 (m)	1235.8 (s)	1268.7 (s)	1400.4 (w)	1479.3(m) 1584.6(w)	2986.5	765.4 (s)	_
11	2-Cl,4-NO ₂	LF	825.8 (w)	1038.6(s) 1051.6(s)	972.6 (m)	1216.1 (s)	1249.0 (s)	1400.4 (w)	1532.0(m) 1591.2(m)	2986.5	748.8 (m)	1340.1(s) 1570.2(w)
12	2,4-Cl ₂	LF	818.1 (s)	1036.4 (s)	923.9 (s)	1235.2 (s)	1256.6 (s)	1400.4 (m)	1489.4(s) 1584.6(m)	2979.9	745.8 (w)	_
13	2,4,5-Cl ₃	LF	854.1 (s)	1045.0 (s)	952.8 (s)	-	1255.6 (s)	1400.4 (m)	1479.3(s) 1584.6(w)	2979.9	781.1 (w)	_
14	2,4,6-Cl ₃	KBr	825.8 (s)	1025.2(s) 1064.7(s)	985.7 (m)	1202.9 (m)	1249.0 (s)	1400.4 (w)	1453.0(s) 1558.3(m)	2960.1	781.1 (w)	_
15	Cl ₅	KBr	847.5 (m)	1038.4 (s)	972.6 (m)	1235.6 (w)	1268.7 (m)	1400.4 (w)	1453.0(m) 1538.6(w)	2979.1	715.9 (m)	-

ACKNOWLEDGEMENT

The author acknowledges Senior Research Fellowship grant for the research by CSIR, New Delhi.

Vol. 22, No. 4 (2010)

Fourier Transform ¹H NMR and IR Spectra of Phosphonates 2815

REFERENCES

- 1. S. Chapalamadugu and G.S. Chaudhry, Crit. Rev. Biotechnol., 12, 357 (1992).
- 2. W.J. Donarski, D.P. Dumas and D.P. Heitmeyer, *Biochemistry*, 28, 4650 (1989).
- 3. J.B. Hendrickson, M.L. Maddoy, J.J. Sims and H.D. Kaesz, *Tetrahedron*, 20, 449 (1964).
- 4. L.C. Thomas, Interpretation of Infrared Spectra of Organophosphorus Compounds, Heydon & sons, pp. 1-95 (1974).
- 5. A.K. Panda and N.K. Roy, Indian J. Chem., 37B, 1016 (1998).
- 6. A.K. Panda, D. Prasad and N.K. Roy, Ann. Pl. Protec. Sci., 6, 56 (1998).
- 7. E. Sebastian, J. Nidiry and N.K. Roy, J. Indian Chem. Soc., 66, 230 (1989).
- 8. E. Sebastian, J. Nidiry and N.K. Roy, J. Indian Chem. Soc., 67, 838 (1990).

(Received: 8 April 2009; Accepted: 21 December 2009) AJC-8204