Asian Journal of Chemistry

Vol. 22, No. 4 (2010), 2518-2528

Synthesis, Characterization and Biological Evaluation of Some Dihydropyrimidinones

K. VIJAY, S. GANAPATY* and A. SRINIVAS RAO[†]

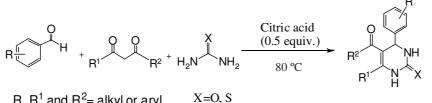
University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530 003, India Fax: (91)(891)2755547; Tel: (91)(891)2844930; E-mail: ganapatyseru@gmail.com

An efficient and facile one pot synthesis of 3,4-dihydropyrimidinones (Biginelli compounds) from divergent aldehydes, β -keto esters and urea or thiourea under solvent free conditions was performed using citric acid as catalyst, resulted in promising yields. These compounds were subjected for anticancer and antiinflammatory activities which showed significant activities.

Key Words: Biginelli compounds, Citric acid, Anticancer activity, Antiinflammatory activity.

INTRODUCTION

Being important building blocks and versatile synthons, 3,4-dihydropyrimidinones are highly featured in medicinal chemistry due to their attractive pharmacological properties, including calcium channel blockers, antihypertensive agents, α -1a-antagonists, HIV gp-120-CD4 inhibitors (crambine and betzellidine alkaloids), antiviral, antitumour, antibacterial activities and neuropeptide Y(NPY) antagonists¹⁻⁴. Therefore, the discovery of milder and practical routes for the synthesis of dihydropyrimidin-2(1*H*)-ones continues to attract the attention of researchers⁵⁻⁸. In the present study, a series of dihydropyrimidinone derivatives were prepared and evaluated for anticancer and antiinflammatory studies.


EXPERIMENTAL

Melting points were recorded on SD fine 9100 electrothermal melting point apparatus and are uncorrected. Infrared spectra were recorded on Perkin-Elmer model 683 or 1310 spectrometers. ¹H NMR spectra were recorded as solutions in CDCl₃ or DMSO(d_6) and chemical shifts reported in parts per million (ppm) on a Varian Gemini 200 MHz or AV 300 MHz, instrument using tetramethylsilane (TMS) as an internal standard. Low-resolution mass spectra were recorded on VG 7070H micromass mass spectrometers. Analytical TLC of all reactions was performed on Merck prepared plates (silica gel 60F-254 on glass).

[†]Indian Institute of Chemical Technology, Hyderabad-500 076, India.

Synthesis and Biological Evaluation of Dihydropyrimidinones 2519

General procedure for the synthesis of 3,4-dihydropyrimidinones: In the experimental procedure, a mixture of aldehyde (1.0 mmol), β -keto ester (1.1 mmol), urea or thiourea (1.3 mmol) and citric acid (0.5 mmol) were taken into a round bottom flask under stirring and the reaction mixture heated at 80 °C for appropriate time (Table-1, Scheme-I). After completion of the reaction as monitored by TLC, cold water was added to the reaction mixture and stirred for 10 min, then filtered and washed with water and dried in vacuum and the corresponding product was further recrystallized from ethanol. The synthesized compounds were characterized by IR, ¹H NMR and mass spectroscopy.

R, R^1 and R^2 = alkyl or aryl

(66 examples)

Scheme-I: Synthetic scheme

Physico chemical data of synthesized compounds

Methyl-4-phenyl-3,4-dihydropyrimidin-2-(1*H*)-one: m.p. 202-204 °C; ¹H-NMR: δ (400 MHz) 9.22 (1H, bs), 7.78 (1H, bs), 7.41-7.22 (5H, m), 5.17 (1H, s), 4.03 (2H, q, J = 6.5 Hz), 2.28 (3H, s), 1.12 (3H, t, J = 6.5 Hz).¹³C NMR: δ (100 MHz): 166.2, 153.0, 149.2, 145.7, 129.3, 128.1, 127.1, 100.1, 60.1, 54.8, 18.6, 14.9. Anal. calcd. for C₁₄H₁₆N₂O₃: C, 64.60; H, 6.20; N, 10.76. Found: C, 64.41; H, 6.28; N, 10.71.

5-Acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2-(1H)-one: m.p. 234-236 °C; IR (KBr, v_{max}, cm⁻¹): 3257, 1699, 1673; ¹H NMR: δ 9.16 (1H, s, NH), 7.78 (1H, s, NH), 7.22-7.36 (5H, m, ArCH), 5.25 (1H, d, J = 2.4 Hz, CH), 2.24 (3H, s, CH₃CO), 2.07 (3H, s, CH₃); ¹³C NMR: δ 194.4, 158.5, 152.1, 147.8, 136.9, 127.7, 113.9, 109.6, 55.1, 53.3, 30.18, 18.8; MS (70 eV, EI): m/z (%): 230 (M, 57), 229 (100); HRMS for C₁₃H₁₄N₂O₂: 230.1102; found. 230.1055.

Ethyl-6-methyl-4-(4-methylphenyl)-2-oxo-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (1): m.p. 220-222 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.18 (3 H, t, J $= 7.2 \text{ Hz}, \text{ OCH}_2\text{CH}_3), 2.32-2.34 \text{ (6H, m, ArCH}_3), 4.08 \text{ (2H, q, } J = 7.2 \text{ Hz}, \text{CH}_2),$ 5.38 (1H, s, CH), 5.50 (1H, bs, NH), 7.11-7.22 (4H, m, ArH), 7.55 (1H, bs, NH) ppm. MS (EI): $m/z = 274 [M^+]$. Anal. (%): calcd for $C_{15}H_{18}N_2O_3$ (274.35): C 65.67, H 6.61, N 10.21; found. C 65.56, H 6.74, N 10.02.

5-Ethoxycarbonyl-6-methyl-4-(4-methylphenyl)-3,4-dihydroyrimidin-2-(1*H*)-thione (2): m.p. 192-194 °C; IR (KBr, v_{max}, cm⁻¹): 3255, 1659, 1562; ¹H NMR: $\delta = 10.27$ (1H, s, NH), 9.58(1H, s, NH), 7.16-7.07 (4H, m, C₆H₄), 5.12 (1H, s, CH), 4.00 (2H, q, J = 7.0Hz, CH₂CH₃), 2.27 (3H, s, C₆H₅-CH₃), 2.25 (3H, s, CH₃), 1.10 (3H, t, J = 7.0Hz, CH₂CH₃); ¹³C NMR : $\delta = 174.2$, 165.2, 144.9, 140.6, 136.9, 2520 Vijay et al.

Asian J. Chem.

129.1, 126.3, 100.9, 59.6, 53.8, 20.7, 17.2, 14.1; MS (70 eV, EI): m/z (%): 290 (M, 100), 261 (M-C₂H₅, 77); Anal. (%): calcd. for $C_{15}H_{18}O_2N_2S$: C, 62.02; H, 6.25; N, 9.65. Found: C, 62.00; H, 6.47; N, 9.62.

TABLE-1
COMPARISION OF THE REACTION RATES OF BENZALDEHYDE AND UREA OR
THIOUREA WITH DIVERGENT ACETOACETATES

Entry	Product		Time (h)	Yield (%)
	Eto NH	X = O	1	98
	H ₃ C N X	X = S	1	99
III	MeO NH	X = 0	1	97
IV	H ₃ C N X	X = S	1	98
V	H ₃ C NH	X = 0	1	92
VI	H ₃ C N X	X = S	1	95
VII	EtO NH	X = O	3.0	45
VIII	F ₃ C N X	X = S	3.0	62
IX	Eto NH	X = 0	2.5	64
x	Ph N X	X = S	2.5	76

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydroyrimidin-2-(**1***H***)-one (3):** m.p. 202-204 °C; ¹H NMR: δ = 9.14 (1H s, NH), 7.66 (1H, s, NH), 7.15-6.84 (4H, m, C₆H₄), 5.07 (1H, s, CH), 3.96 (2H, q, *J* = 6.8Hz, CH₂), 3.70(s, 3H, CH₃), 2.23 (3H, s, CH₃), 1.09 (3H, t, *J* = 6.8Hz, CH₂CH₃).

5-Ethoxycarbonyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydroyrimidin-2-(1*H*)-thione (4): m.p. 150-152 °C; IR (KBr, v_{max} , cm⁻¹): 3250, 1651, 1598, 1561; ¹H NMR (300 MHz, CDCl₃+ DMSO): δ = 10.29 (1H, s, NH), 9.59 (1H, s, NH), 7.14-6.87 (4H, m, C₆H₄), 5.10 (1H, s, CH), 3.99 (2H, q, *J* = 7.20Hz, CH₂CH₃), 3.71 (3H, s, OCH₃), 2.27 (3H, s, CH₃), 1.09 (3H, t, *J* = 7.0Hz, CH₂CH₃); ¹³C NMR: δ = 174.0,

Synthesis and Biological Evaluation of Dihydropyrimidinones 2521

165.2, 158.8, 1.7, 135.8, 127.7, 113.9, 101.1, 59.6, 55.1, 53.5, 17.2, 14.1; MS (70 eV, EI): m/z (%): 306 (M, 82), 277 (M, 80), 32 (100); Anal. (%): calcd for $C_{15}H_{18}O_3N_2S$: C, 58.78; H, 5.93; N, 9.15. Found: C, 58.83; H, 5.77; N, 9.03.

Entry	Product	Tir	me (h)	Yield (%)	Entry	Product	Tim	ie (h)	Yield (%)
	CH ₃					ŎН			
1		X = 0	1	68	15	, ¢	X = 0	2	76
2	[⊥] N [★] X H	X=S	2	73	16		X= S	1.5	88
3	OCH₃	X = 0	1			CI			
3	EtO NH			79	17	° L	X = 0	1	68
4	^{−−−} [−] N [★] X H	X=S	3	84	18	EtO NH N [×] X	X= S	4	72
5		X = O	1	75	19		X = 0	5	56
6		X= S	5	72	20		X= S	5	63
	<u>∕_N</u> ^								
7	٥Ŷ	X = 0	1	75	21	\sim	X = 0	1	94
8	Eto NH	X=S	4	71	22	EtO ^{II} NH N [*] X H	X= S	2	92
	Ph Ph				23		X = O	2	58
9	٩	X = 0	1	71					
10		X= S	5	92	24		X= S	3.5	62
					25	Ph O	X = 0	1.5	75
11		OH X=0	3	63	26	EtO NH	X= S	4	79
12	EtO NH N ^K X H	X=S	3	52	_ .	H	V= 2	4	19
13		H X = O	1	56	27		X = 0	2	58
14		X= S	3.5	48	28		X=S	2	61

TABLE-2 CITRIC ACID MEDIATED MINILIBRARY SYNTHESIS OF DIVERGENT BIGINELLI COMPOUNDS

2522 Vijay et al.

Asian J. Chem.

Entry	Product	Tii	me (h)	Yield (%)	Entry	Product	Tim	e (h)	Yield (%)
31	CH ₃	X = 0	1.0	73	43	OH CH	X = 0	3.0	61
32 H ₃ (X=S	2.5	86	H ₃ C 44	NH ↓N★X H	X=S	2.0	76
33	OCH ₃	× 0	1.0	99	45		X = 0	2.0	71
33 34 H ₃ (X = O X= S	1.0	84	46 ^H 3C ²	NH →N×X	X= S	4.0	88
	NX H					н Сі	X O	1.0	60
35	Ô	X = 0	1.0	75	47		X = 0	1.0	
36 H ₃	C NAX	X=S	5.0	79	48 Н ₃ С		X=S	3.0	78
	н ∕^Ņ^				49	o ÇN	X = 0	5.0	74
37	٥Ŷ	X = 0	1.0	71	50 H ₃ 0		X= S	5.0	62
38 H		X= S	4.0	76	51		X = 0	2.0	84
39	Ph Ph	X = O	1.0	84	52 H ₃		X= S	1.0	91
		X= S	5.0	90	53	Ph O	X = O	1.5	93
	N^X H				H ₃ 54		X= S	2.0	97
41	II	H X = 0	2.0	96	55		X = 0	2.0	62
42 ¹	H ₃ C NH N ^K X H	X= S	4.0	98	H; 56		X=S	2.0	78

Reaction conditions: 1:1.5: 1.3: 0.5 (aldehyde, urea or thiourea, 1,3 diketone and citric acid) at 80 ⁰C. ^aYields refer to isolated pure products.

1-(6-Methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl)-1ethanone (6): m.p. 200-202 °C; IR (KBr, v_{max} , cm⁻¹): 3266, 1697, 1565, 1460; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ 10.01 (1H, bs, N-H), 9.42 (1H, bs, N-H), 7.21-7.39 (5H, m), 5.36 (1H, d, *J* = 5.36), 2.38 (3H, s), 2.09 (3H, s); MS (ESI): m/z = M⁺¹ = 246.

Ethyl-2-oxo-4-phenyl-6-(trifluoromethyl)-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (7): m.p. 203-205 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ = 9.44 (1H, bs, N-H), 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, *J* = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z= M⁺¹ = 315. Ethyl-2-oxo-4, 6-diphenyl-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate (9): m.p. 208-210 °C, IR (KBr, v_{max} , cm⁻¹): 3232, 3015, 2953, 1692, 1647; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ 9.81 (1H, bs, N-H), 9.62 (1H, bs, N-H), 7.28-7.6 (10H, m), 5.21 (1H, d, J = 3.125), 3.731 (2H, q, J = 7.813), 0.801 (3H, t, J = 7.031); MS (ESI): m/z = M⁺¹ = 323.

5-Ethoxycarbonyl-4-(3-hydroxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-(**1***H***)-one (13):** m.p. 163-165 °C; ¹H NMR: δ (400 MHz) 9.37 (1H, bs), 9.16 (1H, s), 7.69 (1H, s), 7.12-6.61 (4H, m), 5.07 (1H, s), 3.99 (q, 2H, J = 7 Hz), 2.24 (3H, s), 1.12 (3H, t, J = 7 Hz); ¹³C NMR: δ (100 MHz) 166.2, 158.2, 153.1, 148.9, 147.1, 130.2, 117.7, 115.0, 113.9, 100.2, 60.1, 54.7, 18.6, 15.0. Anal. calcd. for C₁₄H₁₆N₂O₄: C, 60.86; H, 5.84; N, 10.14. Found: C, 60.84; H, 5.81; N, 10.10.

Ethyl-4-(3-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (14): m.p. 122-124 °C; IR (KBr, v_{max} , cm⁻¹): 3308, 3183, 1667, 1573, 1284, 1192; ¹H NMR (300 MHz, CDCl₃ + DMSO): $\delta = 9.44$ (1H, bs, N-H), 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, J = 3.125), 2.34 (s, 3H), 3.60 (s, 3H); MS (ESI): m/z = M⁺¹ = 293.

Ethyl-l4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (15): m.p. 222-224 °C; IR (KBr, v_{max} , cm⁻¹): 3182, 1686, 1647, 1579, 1312, 1200; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ = 9.44 (1H, bs, N-H); 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, *J* = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z = M⁺¹ = 277.

4-(4-Chlorophenyl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1*H***)-one (17): m.p. 212-214 °C, IR (KBr, v_{max}, cm⁻¹): 3255, 1657, 1560; ¹H NMR : δ = 9.24 (1H, s, NH), 7.78 (1H, s, NH), 7.40 -7.21 (m, 4H, C₆H₄), 5.12 (1H, s, CH), 3.97 (2H, q,** *J* **= 6.9 Hz, CH₂CH₃), 2.24 (3H, s, CH₃), 1.08 (3H, t,** *J* **= 6.9Hz, CH₂CH₃). ¹³C NMR: δ = 174.3, 165.0, 145.3, 142.4, 132.3, 128.6, 128.4, 100.4, 59.7, 53.5, 17.2, 14.0; MS (70 eV, EI): m/z (%): 310 (M, 99), 281 (M-C₂H₅, 82), 199 (100); Anal. (%): calcd for C₁₄H₁₅N₂O₂: C, 54.08; H, 4.87; N, 9.02. Found: C, 54.23; H, 4.71; N, 8.99.**

Ethyl-6-methyl-2-oxo-4-(2-pyridyl)-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (19): m.p. 195-197 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ = 9.44 (1H, bs, NH), 9.29 (1H, bs, NH), 7.208-7.29 (5H, m), 5.21 (1H, d, *J* = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z = M⁺¹ = 262.

5-Ethoxycarbonyl-4-(2-furfuryl)-6-methyl-3,4-dihyropyrimidin-2(1*H***)-one (21**): m.p. 209-211 °C; IR (KBr, v_{max} , cm⁻¹): 3320, 3225, 3100, 1695, 1640; ¹H NMR: δ = 9.24 (1H, s, NH), 7.75 (1H, s, NH), 7.54 (1H, s, ArCH), 6.34 (1H, s, ArCH), 6.08 (1H, s, ArCH), 5.19 (1H, s, CH), 4.01 (2H, q, *J* = 6.9Hz, CH₂CH₃), 2.22 (3H, s, CH₃), 1.12 (3H, t, *J* = 6.9Hz, CH₂CH₃); ¹³C NMR: δ = 165.0, 155.9, 152.4, 149.2, 142.1, 110.3, 105.2, 96.8, 59.2, 47.7, 17.7, 14.1; MS (70 eV, EI): m/ z (%): 250 (M, 80), 221 (99), 177 (100); Anal. (%): calcd. for C₁₂H₁₄N₂O₄: C, 57.57; H, 5.64; N, 11.20. Found: C, 57.63; H, 5.59; N, 11.28.

Asian J. Chem.

Ethyl-4-(2-furyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidine carboxylate (22): m.p. 196-198 °C; IR (KBr, v_{max} , cm⁻¹): 3270, 3120, 1715, 1680, 1600, 1591, 1485; ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (1H, brs, NH), 7.35 (1H, s, furyl-H), 6.96 (1H, brs, NH), 6.30 (1H, s, furyl-H), 6.17 (d, *J* = 2.4 Hz, 1H), 5.50 (1 H, s, furyl-H), 4.16 (2 H, m, OCH₂), 2.38 (3 H, s, CH₃), 1.22 (t, *J* = 7.2 Hz, 3 H, OCH₂CH₃), MS (ESI): m/z = M⁺¹ = 267.

5-Ethoxycarbonyl-6-methyl-4-(2-thienyl)-3,4-dihyropyrimidin-2-(1*H***)-one (23): m.p. 215-217 °C; (KBr, ν_{max}, cm⁻¹): 3165, 1680, 1633; ¹H NMR: \delta = 9.31 (1H, s, NH), 7.88 (1H, s, NH), 7.34 (1H, d,** *J* **= 5.3 Hz, ArCH), 6.93-6.88 (2H, m, ArCH), 5.39 (1H, s, CH), 4.05 (2H, q,** *J* **= 7.1 Hz, CH₂CH₃), 2.20 (3H, s, CH₃), 1.15 (3H, t,** *J* **= 7.1 Hz, CH₂CH₃); ¹³C NMR: \delta = 165.0, 152.2, 148.8, 126.6, 124.6, 123.5, 99.8, 59.3, 49.4, 17.7, 14.1; IR MS (70 ev, EI): m/z (%): 266 (M, 84), 237 (100), 193 (91); Anal. (%): calcd for C₁₂H₁₄O₃N₂S: C, 54.0; H, 5.30; N, 10.52. Found: C, 54.27; H, 5.19; N, 10.33.**

5-Ethoxycarbonyl-6-methyl-4-(2-thienyl)-3,4-dihyropyrimidin-2-(1*H***)-thione (24):** m.p. 214-216 °C; IR (KBr, v_{max} , cm⁻¹): 3245, 1650, 1555; ¹H NMR: δ = 10.46 (1H, s, NH), 9.76 (1H, s, NH), 7.39 (1H, d, *J* = 4.1 Hz, ArCH), 6.95-6.89 (2H, m, ArCH), 5.41 (1H, s, CH), 4.07 (2H, q, *J* = 6.7 Hz, CH₂CH₃), 2.26 (3H, s, CH₃), 1.15 (3H, t, *J* = 6.7 Hz, CH₂CH₃); ¹³C NMR: δ = 174.7, 164.8, 147.0,145.3, 126.8, 125.3, 124.2,101.3, 59.8, 49.4, 17.1, 14.1; MS (70 ev, EI): m/z (%): 282 (M, 99), 253 (50), 109 (100); Anal. (%): calcd for C₁₂H₁₄N₂O₂S₂: C, 51.02; H, 5.00; N, 9.93. Found: C, 51.2; H, 4.91; N, 9.71.

5-Ethoxycarbonyl-6-methyl-4-styryl-3,4-dihydropyrimidin-2(1*H***)-one (25): m.p. 232-234 °C; ¹H NMR: \delta (400 MHz) 9.13 (1H, bs), 7.51 (1H, bs), 7.48-7.23 (5H, m), 6.36 (1H, d,** *J* **= 15.8 Hz), 6.20 (1H, dd,** *J* **= 16 Hz,** *J* **= 6 Hz), 4.72 (1H, d,** *J* **= 6 Hz), 4.11 (2H, m), 2.20 (3H, s), 1.15 (3H, t,** *J* **= 7 Hz); ¹³C NMR: \delta (100 MHz) 164.8, 152.3, 148.1, 136.2, 130.1, 128.8, 128.0, 127.5, 126.0, 97.8, 59.1, 51.7, 17.7, 14.4.**

Ethyl-6-methyl-4-propyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidine carbo-xylate (28): m.p. 188-190 °C; ¹H NMR (400MHz, CDCl₃): δ = 7.56 (1H, bs, NH), 7.05 (1H, bs, NH), 4.37 (1H, t, J = 3.2 Hz, CH), 4.20 (2H, m, CH₂), 2.31 (3H, s, CH₃), 1.62 (3H, t, *J* = 10.5 Hz, (CH₂)₂CH₃), 1.34 (4H, m, CH₂), 0.92 (3H, t, *J* = 7.2 Hz, OCH₂CH₃); MS (EI): m/z = 242 [M⁺]. C₁₁H₁₈N₂O₂S (242.38): calcd. C 54.51, H 7.49, N 11.56; found C 54.13, H 7.37, N 11.47.

1-[4-(4-Methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone (34): m.p. 152-154 °C; IR (KBr, v_{max} , cm⁻¹): 3240, 3120, 2964, 1725, 1715, 1685, 1650, 1510, 1455, 1330, 1270, 770; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ = 9.44 (1H, bs, N-H), 9.29 (1H, bs, NH), 7.208-7.29 (5H, m), 5.21 (1H, d, J = 3.125), 3.60 (3H, s), 2.34 (3H, s), MS (ESI): m/z = M⁺¹ = 307.

5-Methoxycarbonyl-4-(4-dimethylaminophenyl)-6-methyl-3,4-dihydropyrimidin-2-(1*H***)-one (35):** m.p. 213-215 °C; IR (KBr, ν_{max}, cm⁻¹): 3250, 3120, 2928, 2835, 1700, 1651, 1613, 1583, 1230; ¹H NMR δ : 8.98 (1H, bs, N-H), 7.31 (3H, bs,

N-H), 7.18 (2H, d, J = 9.1 Hz), 6.63 (2H, d, J = 9.1 Hz), 5.18 (1H, s), 3.62 (3H, s), 2.91 (6H, s), 2.30 (3H, s). EIMS: m/z (%) 289 (M⁺, 33), 274 (66), 260 (37), 216 (65), 183 (25), 169 (36), 121 (80), 120 (100), 69 (43), 43 (68). Anal. calcd for C₁₅H₁₉N₃O₃: C, 62.27; H, 6.61; N, 14.52. Found: C, 62.01; H, 6.54; N, 14.06.

5-Methoxycarbonyl-4-(4-dimethylaminophenyl)-6-methyl-3,4-dihydropyrimidine-2-(1*H***)-thione (36**): m.p. 152-154 °C. IR (KBr, v_{max} , cm⁻¹): 3280, 3185, 2928, 1710, 1651, 1613, 1583; ¹H NMR δ : 9.98 (1-H, bs, NH), 9.31 (3-H, bs, NH), 7.16 (2H, d, *J* = 9.1Hz), 6.62 (2H, d, *J* = 9.1 Hz), 5.13 (1H, s), 3.60 (3H, s), 2.92 (6H, s), 2.30 (3H, s); ¹³C NMR δ: 74.1, 166.2, 150.3, 144.9, 131.2, 127.4, 112.6, 101.3, 53.7, 51.3, 17.4. EIMS: m/z (%) 305 (M⁺, 21), 246 (25), 231 (8), 185 (22), 171 (18), 141(37), 120 (32), 78 (100), 43 (87). Anal. calcd for C₁₅H₁₉N₃O₂S: C, 58.99; H, 6.27; N, 13.76. Found: C, 58.78; H, 6.18; N, 13.68.

1-[4-(Diethylamino)phenyl]-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone (38): m.p. 202-204 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO): $\delta = 9.44$ (1H, bs, NH); 9.29 (1H, bs, NH), 7.208-7.29 (5H, m), 5.21 (1H, d, J = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z = M⁺¹ = 348.

1-[4-[4-(Diphenylamino)phenyl]-6-methyl-2-oxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone (39): m.p. 172-174 °C; ¹H NMR (300 MHz, CDCl³ + DMSO): $\delta = 9.44$ (1H, bs, N-H), 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, J = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z = M⁺¹ = 414.

5-(Methoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1*H***)-one (47): m.p. 207-208 °C; IR (KBr, v_{max}, cm⁻¹): 3231, 1700, 1641; ¹H NMR: δ=9.23 (1H, s, NH), 7.77 (1H, s, NH), 7.35-7.25 (5H, m, ArCH), 5.15 (1H, d, CH), 3.53 (3H, s, OCH₃), 2.20 (3H, s, CH₃).**

1-[4-(4-Chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1 -ethanone (48): m.p. 160-162 °C; IR (KBr, v_{max} , cm⁻¹): 3260, 2900, 1700, 1650, 780; ¹H NMR (300 MHz, CDCl₃+ DMSO): δ = 9.44 (1H, bs, N-H), 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, *J* = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z = M⁺¹ = 265.

5-Acetyl-6-methyl-4(2-pyridinyl)-3,4-dihydropyrimidin-2-(1*H***)-one (49**): m.p.: 224-226 °C; IR (KBr, ν_{max}, cm⁻¹): 3290, 1712, 1679, 1587; ¹H NMR: δ 9.13 (1H s), 8.47 (1H, m), 7.71 (2H, m), 7.23 (2H, m), 5.31 (1H, d, J = 3.3 Hz,), 2.21 (3H, s), 2.17 (3H, s); ¹³C NMR: δ 194.7, 162.7, 152.8, 149.5, 148.3, 137.2, 122.9, 121.0, 109.4, 56.0, 30.7, 19.2. Anal. calcd for C₁₂H₁₃N₃O₂: C, 62.33; H, 5.67; N, 18.17. Found: C, 62.01; H, 5.59; N, 17.99.

5-Acetyl-4-(2-furfuryl)-6-methyl-3,4-dihydropyrimidin-2-(1*H***)-one (51**): m.p. 210-212 °C; IR (KBr ν_{max}, cm⁻¹): 3278, 1716, 1681, 1591; ¹H NMR δ = 9.21 (1H, s), 7.82 (1H, s), 7.53 (1H, s), 6.33 (1H, s), 6.10 (1H, d, *J* = 2.7 Hz), 5.30 (1H, d, *J* = 2.7 Hz), 2.22 (3H, s), 2.14 (3H, s); ¹³C NMR: δ 194.1, 156.2, 152.8, 149.1, 142.6, 110.6, 107.5, 105.9, 48.1, 30.3, 19.2; Anal. calcd for C₁₁H₁₂N₂O₃: C, 59.99; H, 5.49; N, 12.72. Found: C, 59.81; H, 5.38; N, 12.59. 2526 Vijay et al.

Asian J. Chem.

5-Acetyl-4-butyl-6-methyl-1,2,3,4-tetrahydro-2-pyrimidinone (**55**): m.p. 202-204 °C; ¹H NMR (300 MHz, CDCl₃ + DMSO): δ = 9.44 (1H, bs, N-H), 9.29 (1H, bs, N-H), 7.208-7.29 (5H, m), 5.21 (1H, d, *J* = 3.125), 3.60 (3H, s), 2.34 (3H, s); MS (ESI): m/z= (M⁺¹) 196.

In vitro cytotoxicity evaluation: Compounds 4, 9, 10, 11, 32, 35, 42 and 54 were subjected for anticancer activity on HeLa and HT29 cell lines. Toxicity of test compound in cells was determined by MTT assay⁹ based on mitochondrial reduction of yellow MTT tetrazolium dye to a highly colored blue formazan product. Cells in 96- well plates were incubated with compounds tested for 48 h at 37 °C in RPMI with 10 % FBS medium. Then the above media was replaced with 90 μ L of fresh serum free RPMI and 10 μ L of MTT reagent (5 mg/mL) and plates were incubated at 37 °C for 4 h, there after the above media was replaced with 200 μ L of DMSO and incubated at 37 °C for 15 min. The absorbance at 570 nm was measured on a spectrophotometer (spectra max, molecular devices). The values for each point were calculated from triplicate wells. All experiments were carried out in triplicate. The toxicity of compounds with different concentrations tested was calculated from plot: cell viability (% from control) *versus* concentration of compounds tested in medium.

Antiinflammatory activity: The synthesized compounds 4, 9, 10, 11, 32, 35, 42 and 54 were evaluated for antiinflammatory activity by carrageenan induced paw oedema method¹⁰ using indomethacin as standard drug. Albino rats of either sex, weighing between 200-250 g were used in the experiment. They were divided into ten groups of six animals each. All groups were fasted for overnight and allowed water *ad libitum*. The test compounds were administered to the animals orally and after 1 h of the treatment, 0.1 mL of 1 % carrageenan suspension was injected subcutaneously into the subplantar tissue of the right hind foot and 0.1 mL of saline was injected into the sub plantar tissue of the left hind foot. The thickness of the both paws of each rat, lower and upper surface was measured using Zeitlin's constant load lever consisting of a graduated micrometer combined with a constant loaded lever system to magnify the small changes in paw thickness during the course of the experiment. The paw thickness was determined at 1, 2, 3, 4 and 5 h after induction of inflammation.

RESULTS AND DISCUSSION

Anticancer activity: Among the compounds subjected for anticancer activity, compound (ethyl-4-[4-(diphenylamino)phenyl]-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate) (**10**) has shown more percentage of inhibition on both the cell lines. It has shown 98.88 % of inhibition on HeLa cell line and 99.51 % on HT29 cell lines. Compounds (1-[6-methyl-4-(4-methylphenyl)-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone) (**32**) and (1-[4-(2-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone) (**42**) have shown 87.62 and 78.60 on HeLa cell line and 87.97-71.39 % of inhibition on HT29 cell lines, respectively (Table-3).

Synthesis and Biological Evaluation of Dihydropyrimidinones 2527

Comment	% of inhibition				
Compound	HT29 cell line	HeLa cell line			
4	32.02	37.35			
9	35.32	38.09 55.48			
10	49.21				
11	71.39	78.60			
32	99.51	98.88			
35	24.76	14.66			
42	34.24	39.76			
54	87.97	89.62			

 TABLE-3

 CYTOTOXIC ACTIVITY OF THE SYNTHESIZED COMPOUNDS

Antiinflammatory studies: Among the eight compounds, compounds (ethyl 4-[4-(diphenylamino)phenyl]-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidine carboxylate) (10) and (1-[4-(2-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-5-pyrimidinyl]-1-ethanone) (42) have shown significant reduction in paw oedema when compared to the other compounds. The antiinflammatory activity of the compounds by carrageenan induced paw oedema was tabulated (Table-4).

TABLE-4

ANTIINFLAMMATORY ACTIVITY OF DIHYDROPYRAMIDINONE DERIVATIVES

ANTIM LAWINATOKT ACTIVITY OF DITTDROFTRAMIDINONE DERIVATIVES								
Group	1 h	2 h	3 h	4 h	5 h			
Control 1 % water (1 mL/kg)	0.32 ± 0.01	0.58 ± 0.04	0.64 ± 0.02	0.72 ± 0.01	0.84 ± 0.02			
Compound 4	0.30 ± 0.02	0.46 ± 0.01	0.57 ± 0.03	0.26 ± 0.04	0.22 ± 0.02			
(20 mg/kg)	(7.28 %)	(20.26 %)	(38.42 %)	(58.24 %)	(72.64 %)			
Compound 9	0.29 ± 0.03	0.48 ± 0.02	0.57 ± 0.03	$0.21 \pm 0.01 \mathrm{Z}$	$0.22 \pm 0.04^{**}$			
(20mg/kg)	(8.26 %)	(20.86 %)	(38.42 %)	(66.46 %)	(72.64 %)			
Compound 10	0.26 ± 0.02	0.52 ± 0.04	0.56 ± 0.02	0.28 ± 0.03	$0.16 \pm 0.02*$			
(20 mg/kg)	(8.42 %)	(34.10 %)	(40.48 %)	(65.29 %)	(79.42 %)			
Compound 11	0.31 ± 0.01	0.50 ± 0.03	0.52 ± 0.04	0.26 ± 0.02	$0.19 \pm 0.01^{**}$			
(20 mg/kg)	(06.52 %)	(28.46 %)	(34.28 %)	(58.14 %)	(75.28 %)			
Compound 32	0.28 ± 0.02	0.52 ± 0.03	0.34 ± 0.02	0.28 ± 0.01	$0.21 \pm 0.02^{**}$			
(20 mg/kg)	(10.24 %)	(28.46 %)	(57.60 %)	(64.64 %)	(73.84 %)			
Compound 35	0.28 ± 0.03	0.53 ± 0.04	0.35 ± 0.02	0.29 ± 0.02	$0.18 \pm 0.03^{**}$			
(20 mg/kg)	(10.86 %)	(29.64 %)	(50.52 %)	(63.86 %)	(76.52 %)			
Compound 42	0.28 ± 0.01	0.50 ± 0.03	0.42 ± 0.04	0.27 ± 0.03	$0.17 \pm 0.01*$			
(20 mg/kg)	(10.64 %)	(32.10 %)	(41.48%)	(64.29 %)	(78.22 %)			
Compound 54	0.30 ± 0.02	0.50 ± 0.01	0.44 ± 0.02	0.28 ± 0.04	$0.20 \pm 0.03^{**}$			
(20 mg/kg)	(7.62 %)	(22.92 %)	(32.68 %)	(62.82 %)	(74.04 %)			
Standard- indomethacin (10 mg/kg)	0.24 ± 0.01 (15.55 %)	0.52 ± 0.02 (36.92 %)	0.32 ± 0.01** (62.40 %)	0.24 ± 0.03*** (76.66 %)	0.15 ± 0.02*** (82 %)			

All values are mean \pm SEM values using 6 animals in each group. Significant differences with respect to control group was evaluated by ANOVA, Dunnets 't' test . *p < 0.05, **p < 0.01, ***p < 0.001.

Asian J. Chem.

2528 Vijay et al.

Conclusion

Anticancer activity: Compounds 10, 32 and 42 with N,N-diphenyl,3-hydroxy and methyl groups attached to the phenyl ring in dihydropyrimidinones have shown very good percentage of inhibition on both HeLa and HT29 cell lines.

Antiinflammatory activity: Among the eight compounds subjected for antiinflammatory activity, compounds 10 and 42 with diphenyl and 3-hydroxy groups attached to the phenyl ring in dihydropyrimidinones have shown significant reduction in paw oedema when compared to the other compounds.

ACKNOWLEDGEMENT

The authors thank Dr. S. Ramakrishna, Pharmacology division, IICT, Hyderabad, for his support in performing the biological activity.

REFERENCES

- 1. K.S. Astwal, G.C. Rovnyak, S.D. Kimball, D.M. Floyd, S. Moreland, B.N. Swanson, J.Z. Gougoutas, J. Schwartz and M.F. Malley, *J. Med. Chem.*, **33**, 2629 (1990).
- G.C. Rovnyak, S.D. Kimball, B. Beyer, G. Cucinotta, J.D. DiMarco, J.Z. Gougoutas, A. Hedberg, M.F. Malley, J.P. McCarthy, R. Zhang and S. Moreland, *J. Med. Chem.*, 38, 119 (1995).
- 3. T.U. Mayer, T.M. Kapoor, S.J. Haggarty, R.W. King and S.L. Schreiber, J. Mitchison, Sci., 6B, 971 (1999)
- 4. C.O. Kappe, Eur. J. Med. Chem., 35, 1043 (2000).
- 5. K.S. Atwal, G.C. Rovnyak, B.C. O'reilly and J. Schwartz, J. Org. Chem., 54, 5898 (1985).
- 6. K.S. Atwal, B.C. O'reilly, J.Z. Gougoutas and M.F. Malley, *Heterocycles*, 26, 1189 (1987).
- 7. V.I. Saloutin, Y.V. Burgart, O.G. Kuzueva, C.O. Kappe and O.N. Chupakhin, *J. Fluor. Chem.*, **103**, 17 (2000).
- 8. J.C. Bussolari and P.A. McDonnell, J. Org. Chem., 65, 6777 (2000).
- 9. T. Mosmann, J. Immunol. Meth., 65, 55 (1983).
- 10. R.A. Turner, Screening Methods in Pharmacology, Academic Press, New York, p. 152 (1965).

(Received: 27 January 2009; Accepted: 9 December 2009) AJC-8161