NOTE

Conductometric Equilibrium Study of Methylmethionine Sulfonium Chloride

J.J. VORA[†] and L.S. BHUTADIYA^{*}

Department of Chemistry, Sheth M.N. Science College, Patan-384 265, India E-mail: jabali_vora@hotmail.com

In this study, the determination of dissociation constant of methylmethionine sulfonium chloride (MMSC) by conductance measurements at different concentrations had been carried out. The measurements were carried out at 25 ± 0.1 °C and 35 ± 0.1 °C. Equivalent conductance, degree of dissociation, K, pK and dissociation constants are also calculated.

Key Words: Conductometric study, Equilibrium, Methylmethionine sulfonium chloride.

Due to a number of important biological applications, some authors prefer to write methylmethionine sulfonium chloride (MMSC) as vitamin-U¹. Methylmethionine sulfonium chloride has beneficial power of action on gastric², peptic ulcer², antiulkas factor, antiinflammatory activity³, *etc*. This is the major motive to explore methylmethionine sulfonium chloride for its various biochemical properties⁴.

Methylmethionine sulfonium chloride has a unique combination of α -amino acid unit as well as ionic chlorine in it which is responsible for its high water solubility and physiological activities. This mostly exists in zwitter ionic form. Whether an amino acid will produce excess H⁺ or excess OH⁻, depends on the pH of the solution. When a metal ion is added to an aqueous solution, there exists a competition between the hydrogen and a metal ion for the ligand. Determination of dissociation constant of a weak acid by conductance measurements is one of the oldest methods. From the value of molar conductance, free ligand concentration, dissociation constants and degree of dissociation are found. These values are useful to explain of the role of methylmethionine sulfonium chloride. Looking to the fact that methylmethionine sulfonium chloride is having predominate importance in prevention as well as treatment of several diseases in human beings. If necessary precautions are taken care of, the method is fairly reliable. Ostwald was the first person to determine the dissociation constant of a weak electrolyte⁵.

[†]Department of Chemistry, Hemchandracharya North Gujarat University, Patan-384 265, India.

2478 Vora et al.

Asian J. Chem.

Methylmethionine sulfonium chloride, sodium hydroxide, oxalic acid and perchloric acid used are of AR grade. Solutions were prepared by different dilutions and standardized⁶. The first thermodynamic dissociation constant pK was determined by measuring conductance of methylmethionine sulfonium chloride at different concentrations. Stock solutions of methylmethionine sulfonium chloride 0.05-0.01 M were prepared. From the stock solutions, different concentrations of methylmethionine sulfonium chloride were prepared by dilution. The conductance was measured by conductometer (Equiptronics EQ-361). Specific conductance of water used had conductance less than 1.0×10^{-6} mhos. The measurements were carried out at 25 ± 0.1 °C and 35 \pm 0.1 °C. The equivalent conductance, degree of dissociation and dissociation constant are calculated⁷ (Tables 1 and 2).

SULFONIUM CHLORIDE BY CONDUCTOMETRIC METHOD AT 25 °C						
Ce	ll constant: 1.02	cm ⁻¹ Debye	Huckel const	tant A = 0.5	115	
λ°÷	$\lambda^{\circ} = 119 \text{ mhos cm}^2 \text{ eq}^{-1}$ Debye Huckel constant B = 0.3291					
C m molar	Cond. mmho	Equivalent cond. (λ_c)	$\propto = \lambda_c / \lambda^o$	λ^1	pK = [-log k]	
0.2	0.023×10^{-3}	118.0140	0.98330	119.43	1.9366	
0.4	0.045×10^{-3}	117.0450	0.97540	119.21	1.8096	
0.6	0.068×10^{-3}	116.4500	0.97080	119.03	1.7131	
0.8	0.091×10^{-3}	116.0250	0.96670	118.89	1.6478	
1.0	0.113×10^{-3}	115.2000	0.96000	118.76	1.6375	
1.5	0.168×10^{-3}	114.2667	0.95220	118.49	1.5458	
2.0	0.223×10^{-3}	113.7300	0.94775	118.26	1.4651	
4.0	0.435×10^{-3}	110.9250	0.92500	117.57	1.3407	
6.0	0.641×10^{-3}	108.9700	0.90830	117.05	1.2678	
8.0	0.834×10^{-3}	106.3375	0.88610	116.63	1.2585	
10.0	1.030×10^{-3}	105.0600	0.87550	116.26	1.2107	
15.0	1.510×10^{-3}	102.6800	0.85570	115.47	1.1187	
20.0	1.940×10^{-3}	98.9400	0.82450	114.86	1.1109	
25.0	2.380×10^{-3}	97.1040	0.80920	114.31	1.0666	
30.0	2.810×10^{-3}	95.5400	0.79580	113.82	1.0315	
35.0	3.191×10^{-3}	92.9900	0.77500	113.41	1.0295	
40.0	3.590×10^{-3}	91.5500	0.76250	113.02	1.0090	
45.0	3.949×10^{-3}	89.4900	0.74580	112.67	1.0067	
50.0	4.310×10^{-3}	87.9240	0.73330	112.33	0.9965	

TABLE-1 EIDST DISSOCIATION CONSTANT OF METHONINE

The limitation of the conductometric method restricts the measurement of second dissociation constant⁷. For different temperatures, values obtained by conductometry for the first dissociation constant (Table-3) agrees well with those obtained by other analytical methods. With the help of the values of dissociation constants at various temperatures, the ionic behavior of methylmethionine sulfonium chloride, solubility and distribution of it in aqueous and non-aqueous phases, consequently biological response can be understood.

Vol. 22, No. 3 (2010) Conductometric Equilibrium Study of Methylmethionine Sulfonium Chloride 2479 TABLE-2

FIRST DISSOCIATION CONSTANT OF METHYLMETHIONINE							
SULFONIUM CHLORIDE BY CONDUCTOMETRIC METHOD AT 35 °C							
Cel	l constant: 1.02 cr	n ⁻¹ Debye	Debye Huckel constant $A = 0.5210$				
<u>λ° =</u>	= 120 mhos $cm^2 ec$	Debye D	Debye Huckel constant $B = 0.3310$				
C m molar	Cond. mmho	Equivalent cond. (λ_c)	$\propto = \lambda_c / \lambda^o$	λ^1	pK = [-log k]		
0.2	0.023×10^{-3}	117.50	0.9873	118.44	1.8138		
0.4	0.045×10^{-3}	116.53	0.9792	118.21	1.7347		
0.6	0.068×10^{-3}	116.02	0.9749	118.03	1.6437		
0.8	0.090×10^{-3}	115.45	0.9701	117.89	1.5989		
1.0	0.113×10^{-3}	115.01	0.9664	117.76	1.6560		
1.5	0.168×10^{-3}	114.04	0.9583	117.49	1.4810		
2.0	0.222×10^{-3}	113.11	0.9505	117.26	1.4376		
4.0	0.434×10^{-3}	110.64	0.9297	116.56	1.3076		
6.0	0.639×10^{-3}	108.65	0.9130	116.04	1.2404		
8.0	0.841×10^{-3}	107.20	0.9008	115.61	1.1837		
10.0	1.034×10^{-3}	105.54	0.8868	115.24	1.5820		
15.0	1.504×10^{-3}	102.25	0.8592	114.47	1.1040		
20.0	1.956×10^{-3}	99.75	0.8382	113.83	1.6012		
25.0	2.391×10^{-3}	97.54	0.8196	113.29	1.0311		
30.0	2.809×10^{-3}	95.50	0.8025	112.81	1.0095		
35.0	3.208×10^{-3}	93.48	0.7855	112.38	0.9970		
40.0	3.588×10^{-3}	91.51	0.7689	112.00	0.9900		
45.0	3.958×10^{-3}	89.70	0.7538	111.65	0.9835		
50.0	4.315×10^{-3}	88.01	0.7395	111.32	0.9789		

 $\lambda^{\circ} = \lambda c \rightarrow \sqrt{C}$ as per graph (intercept = λ°), $\alpha = \lambda / \lambda^{\circ}$, $KD_1 = \alpha^2 \cdot c/1 - \alpha$, $\lambda^1 = \lambda^{\circ} - (A + B\lambda^{\circ})\sqrt{\infty}c$ (Debye-Huckel law), Dissociation constant $pKD_1 = -\log KD_1 = as$ per graph.

TABLE-3 ACID DISSOCIATION CONSTANT VALUES OBTAINED FROM GRAPH BY CONDUCTOMETRY

Temperature	25 ± 0.1 °C	$35 \pm 0.1 \ ^{\circ}\text{C}$
pk ₁	2.12	2.02

ACKNOWLEDGEMENT

One of the authors (L.S.B.) is thankful to UGC for financial assistance in the form of minor research project.

REFERENCES

- 1. The Merck Index, edn. 12, p. 1713 (1996).
- 2. M. Akima, N. Saburo, A. Shigeru, K. Ken'ichi, S. Katsunori, S. Tetsuji, O. Saburo, H. Akira and N. Mitsuyoshi, *Jpn. Pharmacol. Therap.*, **27**, 1663 (1997)
- 3. I. Yuko, I. Takafumi, G. Yukinobu, S. Yoichi and I. Kazuhiko, Jpn. Pharmacol. Therap., 35, 41 (2007).
- 4. A.S. Salim, J. Pharm. Sci., 81, 698 (1992).
- 5. H.S. Harned and B.B. Owen, Reinhold Publishing Corporation, New York, edn. 3, p. 310 (1957).
- 6. W.L.F. Armarego and D.D. Perrin, Purification of Laboratory Chemicals, Published by Butterworth Heinemann, edn. 4, Ch. 3 and 4 (1996).
- S. Glasston, Introduction of Electrochemistry, Published by D. Van Nostrand Co., New York, edn. 1, p. 46 (1942).
- 8. R. Nasanen and A. Ekman, Acta Chem. Scand., 6, 1384 (1952).

(Received: 30 June 2009; Accepted: 5 December 2009) AJC-8152