Asian Journal of Chemistry; Vol. 23, No. 2 (2011), 785-787

ASIAN JOURNAL OF CHEMISTRY

www.asianjournalofchemistry.co.in

A Facile Synthesis and Thermal Stability of cis-[Pd(NH₃)₂(C₂O₄)]

Wenzheng Xia, Zaifu Pan, Jialin Chen, Qingsong Ye* and Weiping Liu

State Key Lab of Advanced Technologies for Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, P.R. China

*Corresponding author: E-mail: qingsongye@126.com

(Received: 9 April 2010;

Accepted: 5 October 2010)

AJC-9162

A simple and facile method for synthesis of cis-[Pd(NH₃)₂(C₂O₄)] has been developed and the thermal decomposition behaviour investigated with TG-DTA under air and nitrogen atmosphere. The complex was prepared by the direct reaction of palladium chloride with ammonium oxalate at mild temperature and the yield was up to 76 %. cis-[Pd(NH₃)₂(C₂O₄)] undergoes the thermal decomposition, respectively, at 180 °C in air and 172 °C in N₂, leading to the formation of Pd powder and CO₂ and NH₃ as the gas products.

Key Words: Diammineoxalatopalladium, Synthesis, Characterization, Thermal decomposition behaviour.

INTRODUCTION

cis-[Pd(NH₃)₂(C₂O₄)] is a key intermediate for $[Pd(NH_3)_4]C_2O_4$ and $(NH_4)_2[Pd(C_2O_4)_2]$ which are relatively new Pd complexes and have recently been used as the precursors for palladium-based supported catalysts1, for they are soluble in water and do not contain chloride. Chloride was found to have negative effects on some heterogeneous catalysis^{2,3}. cis- $[Pd(NH_3)_2(C_2O_4)]$ can be easily converted to $[Pd(NH_3)_4]C_2O_4$ by dissolving in ammonia and to $(NH_4)_2[Pd(C_2O_4)_2]$ by reacting with oxalic acid. The synthesis of $[Pd(NH_3)_2(C_2O_4)]$ was first reported in 1991⁴ in which trans-[Pd(NH₃)₂Cl₂] was used as the starting material. The synthetic route involved the quantitative reaction of trans-[Pd(NH₃)₂Cl₂] and silver nitrate, which is not acceptable with respect to industrial manufacturing. In this paper, we reported a facile and simple synthetic method of cis-[Pd(NH₃)₂(C₂O₄)] (Fig. 1) along with its chemical characterization and thermal decomposition properties.

Fig. 1. Structure of cis-Pd(NH₃)₂(C₂O₄)

EXPERIMENTAL

The reagents and solvents used were of commercially available reagent quality. Palladium content was determined

according to the reductive-gravimetric method. FI-IR spectra were recorded in the 4000-400 cm⁻¹ regions on a Perkin Elmer 880 spectrometer with KBr pellets. Thermogravimetric and differential thermal analysis were carried out with a NETZSCH STA 409 PG/PC Jupiter thermo-analysis equipment in air and nitrogen atmosphere (flux rate: 40 cm³ min⁻¹, heating rate: 10 K/min, temperature interval: 25-400 °C, sample mass: 24-25 mg).

Synthesis

Synthesis of *cis*-**[Pd(NH₃)₂(C₂O₄)]:** The powder of PdCl₂ (2.00 g, 11.28 mmol) was slowly added to a solution of (NH₄)₂C₂O₄·H₂O (4.80 g, 33.80 mmol) in 120 mL of water at 60-70 °C. After stirring for 10 min, the pH of the mixture was adjusted to 7 by adding NaOH solution drop by drop and the precipitated immediately. The mixture was cooled to room temperature and the yellow product was collected by filtration, washed with cold water and then dried in a vacuum oven at 60 °C. The yield was about 76 %. Found (calculated) for cis-[Pd(NH₃)₂(C₂O₄)]): Pd 45.98 % (46.56 %). IR (KBr, cm⁻¹): 3281, 3187, v(NH₃), 1695-1629 v_{as}(COO-), 1403-1314 v_s(COO⁻), 1248 δ (NHN), 824 ρ (NH₃) + δ (COO⁻), 783 δ (COO⁻), 558 ν (Pd-N), 477 ν (Pd-O).

Synthesis of [Pd(NH₃)₄]C₂O₄): *cis*-[Pd(NH₃)₂(C₂O₄)] (1.00 g) was dissolved in concentrated ammonia solution (60 mL) at 70-80 °C, forming a pale yellow solution. After evaporating water and excessive ammonia, a white product crystallized from the solution. The white crystal was collected and washed with icy water and ethanol, dried it in a vacuum oven at 60 °C. The yield was about 76 %. Found (calcd.) for [Pd(NH₃)₄|C₂O₄): Pd 40.21 % (40.55) %.

786 Xia et al. Asian J. Chem.

Synthesis of (NH₄)₂[Pd(C₂O₄)₂]: cis-[Pd(NH₃)₂(C₂O₄)] (0.70 g) was mixed with water (80 mL) containing H₂C₂O₄·H₂O (1.17 g) at 60 °C with stirring for ca. 1 h and the solution turned red. The solution was condensed to 10 mL to produce a light yellow crystal which was collected, washed with water and then dried in a vacuum oven at 60 °C. The yield was about 77 %. Found (calcd.) for (NH₄)₂[Pd(C₂O₄)₂]): Pd 33.14 % (33.42 %).

RESULTS AND DISCUSSION

cis-[Pd(NH₃)₂(C₂O₄)] was synthesized directly from a commercially available reagent PdCl₂ at 60-70 °C. The yield was up to 76 % and the synthetic conditions were mild and easy to be controlled. Compared with the previous method in which trans-[Pd(NH₃)₂Cl₂] was used as the starting material, the present synthetic route is very effective and cost-saving and can be employed in industrial preparation of cis-[Pd(NH₃)₂(C₂O₄)] which can be easily converted to [Pd(NH₃)₄]C₂O₄ by dissolving in ammonia and to (NH₄)₂[Pd(C₂O₄)₂] by reacting with oxalic acid. [Pd(NH₃)₄]C₂O₄ and (NH₄)₂[Pd(C₂O₄)₂] are important water-soluble and chloride-free precursors for industrial production of Pd-based catalysts such as Pd/Al₂O₃.

cis-[Pd(NH₃)₂(C₂O₄)] was structurally characterized by chemical analysis and IR data. The content of palladium is in good agreement with the calculated value. The characteristic bands of Pd(NH₃)₂(C₂O₄) in the IR spectrum, as shown in Fig. 2. The binding of NH₃ and oxalate to palladium(II) atom are confirmed by Pd-N vibration at 558 cm⁻¹ and Pd-O vibration at 477 cm⁻¹. The strong bands at 3281 and 3187 cm⁻¹ belong to the stretching vibration of N-H^{5,6}. $\nu_{as}(COO^-)$ and $\nu_{s}(COO^-)$ are responsible for the very strong absorbance bands appearing^{7,8}, respectively, at 1695-1629 cm⁻¹ and at 1403-1314 cm⁻¹. Therefore, the chemical analysis and IR data are well consistent with the chemical structure of cis-[Pd(NH₃)₂(C₂O₄)].

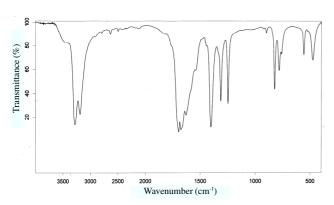


Fig. 2. IR spectrum of cis-[Pd(NH₃)₂(C₂O₄)] in KBr tablet

The TG-DTA diagrams of *cis*-[Pd(NH₃)₂(C₂O₄)] under air and nitrogen are shown in Figs. 3 and 4. An apparent weight loss for *cis*-[Pd(NH₃)₂(C₂O₄)] under air occurs at 180 °C, accompanied by an intensive exothermic peak at 202 °C. The weight loss is about 56 % and the solid residue was determined to be Pd powder by XPS analysis. This corresponds to the ligand elimination and oxidation-reduction of *cis*-[Pd(NH₃)₂(C₂O₄)], forming Pd and CO₂ and NH₃ (reaction 1)

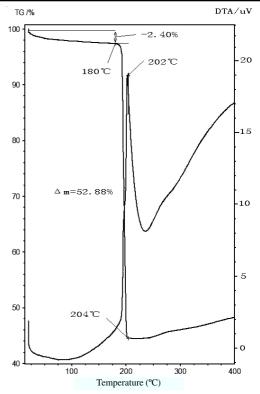


Fig. 3. TG-DTA curves of cis-Pd(NH₃)₂(C₂O₄) in air

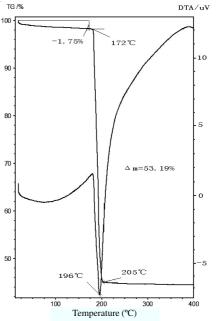


Fig. 4. TG-DTA curves of cis-Pd(NH₃)₂(C₂O₄) in nitrogen atmosphere

As the temperature going up, there is a slow weight gain with exothermic behaviour, which can be explained by the oxidation of Pd to PdO.

$$Pd(NH_3)_2(C_2O_4)(s) \xrightarrow{\text{air}} \\ Pd(s) + CO_2(g) + NH_3(g) - \Delta H_2(Exothermic)$$

$$O_2 > 204 \text{ °C}$$

$$PdO$$

Under an atmosphere of nitrogen there is a high weight loss of cis-[Pd(NH₃)₂(C₂O₄)] between 172-196 °C with a sharp endothermic peak. The weight loss is about 56 % and the solid residue was determined to be Pd powder by XPS analysis, similar to the phenomena under the air atmosphere. No significant weight changes are observed as the temperature rises further. All these TG-DTA data indicates that cis-[Pd(NH₃)₂(C₂O₄)] undergoes a intra-molecular oxidation and reduction, giving rise to Pd and CO₂ and NH₃ (reaction 2).

$$Pd(NH_{3})(C_{2}O_{4})(s) \xrightarrow[172-205\ ^{\circ}C]{N_{2}} Pd(s) + CO_{2}(g) +$$

 $NH_3(g) + \Delta H$ (Endothermic) (2)

Conclusion

A simple and facile method for synthesis of *cis*-[Pd(NH₃)₂(C₂O₄)] has been developed. This synthetic route is very effective and cost-saving and can be employed as an intermediate in industrial production of [Pd(NH₃)₄]C₂O₄ and (NH₄)₂[Pd(C₂O₄)₂]. Its chemical structure was characterized by chemical analysis and IR. cis-[Pd(NH₃)₂(C₂O₄)] undergoes the thermal decomposition, respectively, at 180 °C in air and

172 °C in N_2 , leading to the formation of Pd powder and CO_2 and NH_3 as the gas products.

ACKNOWLEDGEMENTS

This work was financially supported by Science and Technology Development Program of Yunnan Province, P. R. China (No: 2008IA008, 2008CF002, 2009CD133).

REFERENCES

- J.R. Lovie, G.A. Somers and J.J.M. Hendriks, United States Patent Appl. 819968 (1985).
- J.Y. Sun, Industrial Catalyst Deactivation and Regeneration, Chemical Industry Press, Beijing, p. 84 (2005).
- 3. H.H. Zhang, M.C. Gong and J.X. Guo, Chin. J. Catal., 25, 85 (2004).
- N.Y. Rogin, S.A. Kozlova, N.V. Yakimova, O.I. Borisenko and I.I. Smirnov, *Tsvetn. Met.*, 1, 35 (1991).
- Y. Motoyama, H. Kawakami, K. Shimozono, K. Aoki and H. Nishiyama, Organometallics, 21, 3408 (2002).
- H. Rauter, I. Mutikainen, M. Blomberg, C.J.L. Lock, P. Amoochoa, E. Freisinger, L. Randaccio, E. Zangrando, E. Chiarparin and B. Lippert, Angew. Chem. Int. Ed. Engl., 36, 1296 (1997).
- G. Cavinato, A. Vavasori, L. Toniolo and A. Dolmella, *Inorg. Chem. Acta*, 5, 233 (2004).
- 8. J. Vicente and A. Arcas, Coord. Chem. Rev., 249, 1142 (2005).