Asian Journal of Chemistry

Vol. 22, No. 2 (2010), 929-933

Conformational Studies on Divalent Rings C_4H_nM (n = 4, 6 and 8; M = C, Si, Ge, Sn and Pb)

E. VESSALLY*, B. GHASSABI[†], A. KHOJASTEH and S. FATEH Payame Noor University (PNU), Zanjan, Iran E-mail: e_vesali@yahoo.com

In this work, the correlation between geometry and energy of structures were studied. Geometrical parameters including bond lengths and XYZ coordinated of optimized structures, C_4H_4M , C_4H_6M and C_4H_8M (M = C, Si, Ge, Sn and Pb) were calculated. The change order of ΔG_{t-s} is (except for M = C): $C_4H_6M > C_4H_8M > C_4H_4M$.

Key Words: Molecular structure, Carbene, Silylene, Germylene, Stanylene, Plumbylene, C_4H_4M , C_4H_6M and C_4H_8M , Singlet-triplet splitting.

INTRODUCTION

Carbenes are important intermediates in a variety of chemical reactions¹⁻³. Moreover, there has been significant synthetic interest in producing the silylene and germylene analogues of the carbene^{4,5}. The reactivity of singlet and triplet states as well as the magnitude of the singlet-triplet splitting are of great importance and have received particular attention⁶⁻¹¹. The stabilization effects for singlet and/or triplet states of carbenes are applied for heavier congeners of group 14 elements¹²⁻¹⁴. However, non-planar isomers are found for most of these singlet cyclic conjugated carbenes through semi-empirical studies¹⁵.

Following up our work on five membered cyclic conjugated carbene¹⁵, we studied the conformational studies for C₄H₄M, C₄H₆M and/or C₄H₈M (M = C, Si, Ge, Sn and Pb) (**Scheme-I**).

Scheme-I: Singlet and triplet states of C_4H_4M , C_4H_6M and C_4H_8M (M = C, Si, Ge, Sn and Pb)

EXPERIMENTAL

Geometry optimizations of C₄H₄M, C₄H₆M and/or C₄H₈M are carried out by DFT (B3LYP) method using 6–311++G (3*df*, 2*p*) basis set of the GAUSSIAN 98 system of programs (**Scheme-I** and Table-1)¹⁶⁻¹⁹. To find a global minimum on a

[†]Islamic Azad University, Tabriz Branch, Tabriz, Iran.

930 Vessally et al.

Asian J. Chem.

specific surface, all possible conformations of the given species are examined through scanning the specific dihedral angles. Therefore, the global minimum of structures is only presented in this paper. For stanylenes and plumbylenes hetero-atoms calculation are optimized using LANL2DZ basis set²⁰. Vibrational analysis on the stationary points have been performed at B3LYP/6–311++G (3df, 2p) level of theory.

(M = C, Si, Ge, Sn and Pb)									
Compound	$C_4H_6MH_2$	C_4H_4M :	C_4H_6M :	C_4H_8M :					
	$=C-MH_2$	=C-M:	=C-M:	-HC-M:					
$M = C_{(s)}$	1.51	1.39	1.45	1.48					
$M = Si_{(s)}$	1.87	1.43	1.38	1.49					
$M = Ge_{(s)}$	1.95	1.93	1.89	1.93					
$M = Sn_{(s)}$	2.12	1.84	1.84	1.93					
$M = Pb_{(s)}$	2.22	2.26	1.98	2.03					
$M = C_{(t)}$	1.51	1.94	1.94	2.04					
$M = Si_{(t)}$	1.87	2.20	2.16	2.21					
$M = Ge_{(t)}$	1.95	2.19	2.14	2.23					
$M = Sn_{(t)}$	2.12	2.27	2.28	2.28					
$M = Pb_{(t)}$	2.22	2.25	2.24	2.34					

TABLE-1
GEOMETRICAL PARAMETERS INCLUDING BOND LENGTH (DEGREE) FOR
SINGLET AND TRIPLET STATES OF C4H6MH2, C4H4M, C4H6M AND C4H8M
(M - C Si Ge Sn and Ph)

RESULTS AND DISCUSSION

In present studies, the correlation between geometry and energy of structures were studied. Geometrical parameters including bond lengths, bond angles and XYZ coordinated of optimized structures, C₄H₄M, C₄H₆M and C₄H₈M (M = C, Si, Ge, Sn and Pb) were calculated (Table-1 and table in supplementary section). Sum of electronic and thermal free energy differences between singlet and triplet states, ΔG_{t-s} , are calculated. All calculation were carried out at B3LYP/311++G (3*df*, 2*p*) level of theory.

Singlet state of carbene, C_4H_4C , appears non-planar and ground state while its corresponding triplet state is planar. In contrast, both singlet and triplet states of its analogues, C_4H_4M (M = Si, Ge, Sn and Pb) have planar structures with the ground state singlet. The structures of C_4H_6M and C_4H_8M are non-planar in both singlet and triplet states.

The free energy differences between singlet and the corresponding triplet states, ΔG_{t-s} , of C₄H₄M, C₄H₆M and C₄H₈M generally increase in absolute magnitude from M = C to M = Pb (Table-2). The change order of singlet-triplet splitting, ΔG_{t-s} : plumbylenes > stanylenes > germylenes > silylenes > carbene.

Singlet-triplet splitting, ΔG_{t-s} , was also compared along with three analogues C_4H_4M , C_4H_6M and C_4H_8M . ΔG_{t-s} of C_4H_4C is the most with respect to C_4H_6C and C_4H_8C (Table-2). This order attributed to the instability of singlet or the stability of

Vol. 22, No. 2 (2010)

TABLE-2

SUM OF ELECTRONIC AND THERMAL FREE ENERGY SPLITTING, ΔG_{s-t} , BETWEEN SINGLET AND TRIPLET STATES, kcal/mol, AT B3LYP/6-311++G (3df,2p) FOR C₄H₄M, C₄H₆M AND C₄H₈M (WHERE M = C, Si, Ge, Sn and Pb)

Compound	$\Delta G_{s-t} (C_4 H_4 M)$	$\Delta G_{s-t} \left(C_4 H_6 M \right)$	$\Delta G_{s-t} (C_4 H_8 M)$
M=C	9.598	-4.744	-9.000
M=Si	-14.851	-34.098	-31.118
M=Ge	-22.786	-38.318	-34.106
M=Sn	-26.205	-37.645	-31.954
M=Pb	-27.304	-38.597	-36.074

TABLE-3XYZ COORDINATED OF OPTIMIZED STRUCTURES,
 C_4H_4M , C_4H_6M AND C_4H_8M (M = C, Si, Ge, Sn and Pb)

Compd.	Atom(s)	C_4H_4M			C ₄ H ₆ M			C_4H_8M		
		Х	Y	Ζ	Х	Y	Ζ	Х	Y	Ζ
M=C _(s)	M1	0.129	-1.093	0.229	-0.167	-1.362	0.000	0.000	1.360	-0.375
	C2	1.243	-0.359	-0.159	-1.224	-0.371	0.000	-1.096	0.370	-0.519
	C3	0.634	0.894	-0.019	-0.757	0.907	0.000	-0.769	-0.931	0.256
	C4	-0.832	0.797	-0.025	0.731	0.958	0.000	0.768	-0.931	0.256
	C5	-1.150	-0.533	-0.083	1.091	-0.547	0.000	1.095	0.583	0.256
	M1	1.375	0.000	0.000	1.422	-0.045	0.000	-1.040	-1.024	0.000
	C2	-0.023	-1.331	0.000	0.151	1.347	0.000	0.886	-1.024	0.000
M=Si _(s)	C3	-1.233	0.750	0.000	-1.127	0.909	0.000	0.416	1.395	-0.314
.,	C4	-0.023	1.331	0.000	-1.388	-0.568	0.000	1.401	0.395	0.314
	C5	-0.023	-1.331	0.000	-0.038	-1.314	0.000	-1.011	0.902	0.000
	M1	1.008	0.000	0.000	1.055	-0.011	-0.001	-0.797	-0.751	0.000
	C2	-0.494	1.360	0.000	-0.341	1.387	0.001	-0.676	1.273	0.000
M=Ge _(s)	C3	-1.687	-0.749	0.000	-1.596	0.893	0.000	0.771	1.683	-0.324
	C4	-1.687	0.749	0.000	-1.825	-0.591	-0.002	1.726	0.669	0.324
	C5	-0.494	-1.360	0.000	-0.482	-1.343	0.002	1.231	-0.751	0.000
	M1	0.840	0.000	0.000	0.885	-0.005	-0.004	-0.694	-0.607	0.000
	C2	-0.848	1.414	0.000	-0.707	1.451	0.016	-0.401	1.586	0.000
M=Sn _(s)	C3	-2.014	-0.747	0.000	-1.933	0.892	0.003	1.076	1.859	-0.339
	C4	-2.014	0.747	0.000	-2.148	-0.599	-0.022	1.985	0.821	0.339
	C5	-0.848	-1.414	0.000	-0.832	-1.401	0.025	1.519	-0.607	0.000
	M1	-0.612	0.000	0.000	-0.649	-0.003	-0.003	-0.518	-0.442	0.000
M=Pb _(s)	C2	1.145	-1.431	0.000	1.014	1.470	0.025	-0.155	1.810	0.000
	C3	2.300	0.746	0.000	2.228	0.891	0.003	1.326	2.033	-0.344
	C4	2.300	-0.746	0.000	2.438	-0.602	-0.033	2.218	0.985	0.344
	C5	1.144	1.432	-0.001	1.135	-1.420	0.037	1.763	-0.442	0.000
M=C _(t)	M1	0.001	-1.215	0.000	-0.107	-1.265	0.000	0.000	1.231	-0.404
	C2	1.189	-0.427	0.000	-1.233	-0.469	0.000	1.172	0.629	0.287
	C3	0.741	0.871	0.000	-0.837	0.864	0.000	0.773	-0.877	0.287
	C4	-0.741	0.871	0.000	0.674	0.974	0.000	-0.773	-0.877	0.287
	C5	-1.188	-0.427	0.000	1.184	-0.514	0.000	-1.172	0.337	-0.604

932 Vessally et al.

Asian J. Chem.

M=Si _(t)	M1	-1.259	0.000	0.000	-0.916	-0.975	0.000	-0.889	-1.033	0.000
	C2	-0.033	-1.370	0.000	-1.130	0.853	0.000	-1.176	0.876	0.000
	C3	1.176	0.732	0.000	0.094	1.422	0.000	0.252	1.366	-0.332
	C4	1.176	-0.732	0.000	1.340	0.549	-0.001	1.314	0.452	0.332
	C5	-0.033	1.370	0.000	1.013	-0.975	0.000	1.041	-1.033	0.000
	M1	0.929	0.000	0.000	0.996	-0.025	-0.022	-0.694	-0.759	0.000
	C2	-0.411	-1.399	0.000	-0.262	1.450	0.048	-0.875	1.273	0.000
$M=Ge_{(t)}$	C3	-1.595	0.734	0.000	-1.504	0.941	0.030	0.571	1.663	-0.337
	C4	-1.595	-0.734	0.000	-1.746	-0.563	-0.093	1.606	0.716	0.337
	C5	-0.411	1.399	0.000	-0.484	-1.427	0.106	1.346	-0.759	0.000
	M1	0.780	0.000	0.000	-0.847	-0.010	0.018	-0.624	-0.615	0.000
	C2	0.781	1.390	0.000	0.650	1.512	-0.074	-0.592	1.610	0.000
$M=Sn_{(1)}$	C3	2.001	0.714	0.000	1.848	0.922	-0.032	0.882	1.846	-0.350
	C4	2.001	0.714	0.000	2.049	-0.589	0.135	1.859	0.855	0.350
	C5	0.781	1.390	0.000	0.827	-1.475	-0.150	1.601	-0.615	0.000
M=Pb _(t)	M1	-0.631	0.000	0.000	0.698	0.045	0.058	-0.477	-0.436	0.107
	C2	1.151	1.381	0.000	1.038	1.574	0.100	1.856	-0.436	0.107
	C3	2.407	-0.693	0.000	2.192	0.903	0.034	2.091	1.065	0.107
	C4	2.407	0.693	0.000	2.352	-0.615	0.363	1.135	1.884	-0.826
	C5	1.151	-1.381	0.000	1.170	4.377	0.194	-0.334	1.829	-0.447

triplet state for C₄H₄C respect to C₄H₆C and C₄H₈C. Moreover, except for M=C, the change order of ΔG_{t-s} with negative sign is: C₄H₆M > C₄H₈M > C₄H₄M. This order is related to the stability of singlet or the instability of triplet state for C₄H₆M respect to C₄H₈M and C₄H₄M.

To discuss about a possible strong conjugation between M: and double bonds apart from the energetic criterion, the geometrical parameter is discussed (Table-1). Stronger conjugation between M: and an adjacent C=C bond should lead to a shorter M–C bond (as compared with the M–C bond in the corresponding H₂M–C=C compound). The bond length =C–C: for triplet state and specially singlet state of C₄H₄C: is shortest among the other analogues (C₄H₆C: and C₄H₈C:), showing strongest conjugation between C: and an adjacent C=C bond. Surprisingly, the bond length =C–Si: for the singlet state of C₄H₆Si: is shortest among the other analogues (C₄H₄C: and C₄H₈C:) while the bond length =C–Si: for triplet state of C₄H₆Si: is near to the other analogues. The bond length =C–C: for both triplet and singlet states of C₄H₆M: (M = Ge, Sn and Pb) is more or less similar to each other.

Conclusion

Singlet and triplet splittings, ΔG_{t-s} , of C₄H₄M, C₄H₆M and C₄H₈M (M = C, Si, Ge, Sn and Pb) are calculated at B3LYP/6–311++G (3*df*, 2*p*) level of theory. The change order of ΔG_{t-s} is: C₄H₆M > C₄H₈M > C₄H₄M. The bond length =C–C: for triplet state and specially singlet state of C₄H₄C: is shortest among the other analogues (C₄H₆C: and C₄H₈C:), showing strongest conjugation between C: and an adjacent

C=C bond. Surprisingly, the bond length =C–Si: for the singlet state of C_4H_6Si : is shortest among the other analogues (C_4H_4C : and C_4H_8C :) while the bond length =C–Si: for triplet state of C_4H_6Si : is near to the other analogues.

REFERENCES

- 1. U.H. Brinker, Advances in Carbene Chemistry, Vol. 1 (1994) and Vol. 2 (1998).
- 2. C. Gonzalez, A. Restrepo-Cossio, M. Marquez and K.B. Wiberg, J. Am. Chem. Soc., **118**, 5408 (1996).
- 3. M. Regitz, Angew. Chem. Int. Ed. Engl., 35, 72 (1996).
- 4. M. Dent, R. Lemon, R. Hayashi, R. West, A.V. Belyakov, H.P. Verne, A. Haaland, M. Wagner and N. Metzler, *J. Am. Chem. Soc.*, **6**, 2691 (1994).
- W.A. Herrmann, M. Denk, J. Behm, W. Scherer, F.R. Klingan, H. Bock, B. Solouki and M. Wagner, *Angew. Chem. Int. Ed. Engl.*, 11, 1485 (1992).
- 6. H.F. Schaefer III, *Science*, **231**, 1100 (1986).
- 7. O.M. Nefedov, M.P. Egorov, A.I. Ioffe, L.G. Menchikov, P.S. Zuev, V.I. Minkin, B. Ya Simkin and M.N. Glukhovtsev, *Pure Appl. Chem.*, **64**, 265 (1992).
- 8. R.L. Schwartz, G.E. Davico, T.M. Ramond and W.C. Lineberger, *J. Phys. Chem.*,**103**, 8213 (1999).
- 9. Z. Zhu, T. Bally, L.L. Stracener and R.J. McMahon, J. Am. Chem. Soc., 121, 2863 (1999).
- 10. Y. Wang, T. Yuzawa, H. Hamaguchi and J.P. Toscano, J. Am. Chem. Soc., **121**, 2875 (1999).
- 11. Y. Wang and J.P. Toscano, J. Am. Chem. Soc., **122**, 4512 (2000).
- 12. P.H. Mueller, N.G. Rondan, K.N. Houk, J.T. Harrison, D. Hooper, B.H. Willen and J.F. Liebman, *J. Am. Chem. Soc.*, **103**, 5049 (1981).
- 13. Sh. Khodabandeh and E.A. Carter, J. Phys. Chem., 97, 4360 (1993).
- 14. H. Tomioka, Acc. Chem. Res., 30, 315 (1997).
- 15. M.Z. Kassaee, S. Arshadi, M. Acedy and E. Vessally, J. Organomet. Chem., 690, 3427 (2005).
- 16. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988).
- 17. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- 18. L.A. Curtiss, M.P. McGrath, J.-P. Blaudeau, N.E. Davis, R.C. Binning Jr and L. Radom, J. Chem. Phys. 103, 6104 (1995).
- 19. M.J. Frisch, Gaussian 98, Revision A. 6, Gaussian Inc., Pittsburgh PA (1998).
- 20. H.B. Schlegel and M.J. Frisch, Int. J. Quantum Chem., 54, 83 (1995).

(Received: 6 July 2008; Accepted: 6 October 2009) AJC-7926