Asian Journal of Chemistry

Vol. 22, No. 2 (2010), 888-892

Conformational Studies on Aryl-cyclopentadienylidenes: Electronic Effects of Aryl Groups

E. VESSALLY Islamic Azad University, Miyaneh Branch, Miyaneh, Iran E-mail: e_vesali@yahoo.com

The total energy, E_T ; zero-point energy, thermal energies (E), enthalpies (H) and Gibbs free energies (G) were calculated for aryl substituted divalent five membered cyclic compounds $Ar-C_4H_3G$ (G = $-NH_2$, -OH, $-CH_3$, -F, -Cl, -Br, -H, $-CF_3$ and $-NO_2$) at B3LYP/6–31+G* and B3LYP/6–311++G** levels of theory. It could be concluded that an allenic character was constructed instead of carbenic character for both singlet and triplet states of $Ar-C_4H_3G$.

Key Words: Carbene, Cyclopentadienylidenes, Singlet-triplet gap, Electronic effects.

INTRODUCTION

Divalent carbenes and their analogues are strongly reactive¹. The cyclic completely conjugated species are important in the chemistry of divalent carbene intermediates². These divalent structures were formerly described in terms of the Huckel 4n + 2 rule³. However, non-planar isomers are found energy minima for most of these singlet cyclic conjugated carbenes through semi-empirical studies⁴. The isolation of the stable five membered cyclic conjugated carbene is first reported Su and Chu⁵ and Arduengo *et al.*⁶. Since most of divalent carbenes and their analogues are unstable, theoretical calculation was required for analysis their properties. As a continuation of our studies^{2,7-10}, in this manuscript, the conformational studies was carried out on aryl-cyclopentadienylidenes Ar–C₄H₃G (G = –NH₂, –OH, –CH₃, –F, –Cl, –Br, –H, –CF₃ and –NO₂).

EXPERIMENTAL

Full geometry optimizations of Ar–C₄H₃G (G = -NH₂, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂) were carried out by DFT method using 6-311++G** basis set of the GAUSSIAN 98 system of programs¹¹⁻¹³ (**Scheme-I**). To find a global minimum on a specific surface, all possible conformations of the given species were examined through scanning the specific dihedral angles at B3LYP/6-311++G** level. This was for obtaining more accurate values of thermal energies (E) enthalpies (H) and Gibbs free energies (G). Freq keyword was used for obtaining zero-point energies (ZPE), thermal energies (E), enthalpies (H) and Gibbs free energies (G).

Vol. 22, No. 2 (2010)

Conformational Studies on Aryl-cyclopentadienylidenes 889

$G = -NH_2$, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂

Scheme-I: Electron donating substituents ($G = -NH_2$, -OH, $-CH_3$, -F, -Cl and -Br) and electron withdrawing substituents ($G = -CF_3$ and $-NO_2$) of cyclopentadienylidenes

RESULTS AND DISCUSSION

The total energy, E_T ; zero-point energy, thermal energies (E), enthalpies (H) and Gibbs free energies (G) were calculated for aryl substituted divalent five membered cyclic compounds Ar-C₄H₃G (G = -NH₂, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂) at B3LYP/6-31+G* and B3LYP/6-311++G** levels of theory. Considering the size of molecules probed, and the consistency of the results obtained, these *ab initio* levels proved to be appropriate. For the sake of brevity, only the data acquired through B3LYP/6-311++G** level of theory (**Scheme-I** and Table-1). Geometrical parameters including bond lengths (R), bond angle (A) and dihedral angle (D) were calculated at B3LYP/6-311++G** level (Tables 2 and 3). The DFT calculations indicate that all singlet state of Ar-C₄H₃G is ground state with non-planar conformer (Table-1). DFT calculations specify that all triplet states of Ar-C₄H₃G (G = -NH₂, -OH, -CH₃, -F, -Cl, -Br, -H, -CF₃ and -NO₂) is more stable than their corresponding singlet states.

B3LYP/6-311++G^{**} calculations indicated that bond length C_1 - C_2 for singlet states of Ar-C₄H₃G increase with substitution of electron donating groups while decrease with substitution of electron withdrawing groups at phenyl group (Table-2). The bond length of C₁-C₂ is higher with respect to C₁-C₅ for both singlet and triplet states of Ar-C₄H₃G. Comparison between C₁-C₂ and C₁-C₅ show that a double bond was formed between C₁ and C₅. Therefore, it could be concluded that an allenic character was constructed instead of carbenic character for both singlet and triplet states of Ar-C₄H₃G. Allenic character was not significantly affected by substitution of electron withdrawing or electron donating groups at phenyl group.

Bond angle $\angle A_{2,1,5}$ for singlet states of Ar–C₄H₃G is more than for triplet state (Table-3). This is inconsistent for acyclic carbenes. DFT calculations indicated that bond angle $\angle A_{2,1,5}$ for both singlet and triplet states of Ar–C₄H₃G was increased through replacement of electron withdrawing groups at phenyl group.

DFT calculations specified that dihedral angle $\angle D_{2,1,5,4}$ for singlet states of Ar– C₄H₃G decrease with substitution of electron donating groups while increase with substitution of electron withdrawing groups at phenyl group (Table-3). Therefore, 890 Vessally

Asian J. Chem.

TABLE-1 SUM OF TOTAL ENERGY (E_T), ZERO POINT ENERGY (ZPE), THERMAL ENERGY (E), THERMAL ENTHALPY (H), THERMAL FREE ENERGY (G) AT B3LYP/6-311++G** FOR BOTH SINGLET (s) AND TRIPLET (t) STATES of Ar-C₄H₃G **G**

			•				
Compound	Singlet state						
Compound	E _T kcal/mol	ZPE kcal/mol	E kcal/mol	H kcal/mol	G kcal/mol		
G=-NH ₂	-300664.770	-300561.822	-300555.492	-300554.899	-300584.125		
G=-OH	-313140.845	-313045.675	-313039.531	-313038.939	-313067.886		
$G=-CH_3$	-290586.575	-290467.262	-290460.681	-290460.089	-290490.863		
G=-F	-328221.282	-328133.808	-328127.919	-328127.327	-328155.915		
G=-Cl	-554344.482	-554257.854	-554251.723	-554251.130	-554280.541		
G=-Br	-1880829.451	-1880743.234	-1880736.933	-1880736.340	-1880766.608		
G=-H	-265925.150	-265832.531	-265827.162	-265826.569	-265853.839		
$G=-CF_3$	-477483.876	-477379.765	-477372.091	-477371.498	-477405.345		
$G=-NO_2$	-394287.832	-394185.263	-394178.270	-394177.677	-394209.309		
Compound	Triplet state						
	E _T kcal/mol	ZPE kcal/mol	E kcal/mol	H kcal/mol	G kcal/mol		
G=-NH ₂	-300675.569	-300572.565	-300566.270	-300565.677	-300595.460		
G=-OH	-313150.951	-313055.897	-313049.753	-313049.160	-313078.771		
$G=-CH_3$	-290596.375	-290476.962	-290470.381	-290469.789	-290500.462		
G=-F	-328230.926	-328143.661	-328137.763	-328137.171	-328166.433		
G=-Cl	-554353.987	-554267.501	-554261.384	-554260.792	-554290.812		
G=-Br	-1880838.953	-1880752.911	-1880746.614	-1880746.021	-1880776.929		
G=-H	-265934.631	-265842.168	-265836.809	-265836.216	-265864.107		
$G=-CF_3$	-477492.728	-477388.518	-477380.844	-477380.251	-477414.098		
$G=-NO_2$	-394296.463	-394193.795	-394186.802	-394186.209	-394217.842		

TABLE-2 BOND LENGTHS (Å), AT B3LYP/6-311++G** FOR Ar–C₄H₃C

			2	4		
Compound	R _{1,2}	R _{2,3}	R _{3,4}	R _{4,5}	R _{5,1}	R _{2,6}
$G = -NH_2$	1.466	1.378	1.443	1.422	1.375	1.442
G = -OH	1.462	1.375	1.449	1.419	1.376	1.446
$G = -CH_3$	1.458	1.375	1.450	1.418	1.376	1.448
G = -F	1.457	1.373	1.453	1.416	1.376	1.450
G = -Cl	1.456	1.374	1.453	1.416	1.375	1.449
G = -Br	1.456	1.374	1.453	1.416	1.376	1.449
G = -H	1.456	1.374	1.453	1.416	1.376	1.450
$G = -CF_3$	1.454	1.374	1.455	1.414	1.375	1.449
$G = -NO_2$	1.453	1.3755	1.454	1.414	1.374	1.446

Vol. 22, No. 2 (2010)

$G = -NH_2$	1.460	1.427	1.387	1.467	1.348	1.428
G = -OH	1.468	1.420	1.391	1.466	1.347	1.433
$G = -CH_3$	1.473	1.414	1.396	1.463	1.347	1.436
G = -F	1.475	1.410	1.400	1.461	1.348	1.438
G = -Cl	1.476	1.408	1.401	1.460	1.348	1.437
G = -Br	1.476	1.408	1.402	1.460	1.348	1.438
G = -H	1.476	1.408	1.401	1.460	1.348	1.439
$G = -CF_3$	1.481	1.396	1.414	1.450	1.352	1.442
$G = -NO_2$	1.483	1.390	1.423	1.441	1.356	1.442

TABLE-3 BOND ANGLE (DEGREE) AND DIHEDRAL ANGLE (DEGREE) AT B3LYP/6-311++G (3df, 2p) FOR Ar-C₄H₃G

Compound	A _{2.1.5}	D _{2.1.5.4}	D _{1.2.6.7}
$G = -NH_2$	113.352	29.353	15.486
G = -OH	114.263	30.310	15.884
$G = -CH_3$	115.002	30.846	15.801
G = -F	115.140	31.056	16.178
G = -Cl	115.298	31.127	15.756
G = -Br	115.333	31.168	15.818
G = -H	115.380	31.170	15.997
$G = -CF_3$	115.848	31.471	15.746
$G = -NO_2$	116.102	31.605	14.510
$G = -NH_2$	112.330	-0.010	-0.142
G = -OH	112.331	-0.013	0.030
$G = -CH_3$	112.352	-179.989	-0.139
G = -F	112.357	0.006	0.000
G = -Cl	112.346	0.041	-0.027
G = -Br	112.351	0.057	-0.036
G = -H	112.380	0.010	0.054
$G = -CF_3$	112.460	-0.005	-0.007
$G = -NO_2$	112.520	0.003	0.000

for singlet states of Ar–C₄H₃G, the electron donating groups lead to less puckered conformer. Dihedral angle $\angle D_{1,2,6,7}$ for singlet states of Ar–C₄H₃G decrease more or less with both electron donating and electron withdrawing groups at phenyl group.

Conclusion

B3LYP/6-311++G^{**} calculations indicated that bond length C_1 - C_2 for singlet states of Ar- C_4H_3G increase with substitution of electron donating groups while decrease with substitution of electron withdrawing groups at phenyl group.

892 Vessally

Asian J. Chem.

Comparison between C_1-C_2 and C_1-C_5 show that a double bond was formed between C_1 and C_5 . Therefore, it could be concluded that an allenic character was constructed instead of carbenic character for both singlet and triplet states of Ar- C_4H_3G . Allenic character was not significantly affected by substitution of electron withdrawing or electron donating groups at phenyl group.

ACKNOWLEDGEMENT

The author expresses special thanks to Islamic Azad University, Miyaneh Branch for financial support.

REFERENCES

- 1. P.P. Gaspar and R. West, in eds.: Z. Rappoport and Y. Apeloig, Chemistry of Organic Silicon Compounds, Wiley, Chichester, Vol. 2 (1997).
- 2. M.Z. Kassaee, S. Arshadi, M. Acedy and E. Vessally, J. Organomet. Chem., 690, 3427 (2005).
- (a) R. Gleiter and R. Hoffmann, J. Am. Chem. Soc. 90, 5457 (1968); (b) H. Kollmar, J. Am. Chem. Soc. 100, 2660 (1978); (c) L. Radom, H.F. Schaefer III and M.A. Vincent, Nouv. J. Chim. 4, 411 (1980).
- 4. M.Z. Kassaee, M.R. Nimlos, K.E. Downie and E.E. Waali, Tetrahedron, 41, 1579 (1985).
- 5. M. Su and S. Chu, Inorg. Chem. 38, 4819 (1999).
- 6. A.J. Arduengo, R.L. Harlow and M. Kline, J. Am. Chem. Soc. 113, 361 (1991).
- 7. E. Vessally, N. Chalyavi, A. Rezaei and M. Nikoorazm, Russ. J. Phys. Chem., 81, 1821 (2007).
- 8. E. Vessally, A. Rezaei, N. Chalyavi and M. Nikoorazm, J. Chin. Chem. Soc. 54, 1583 (2007).
- 9. E. Vessally, M. Nikoorazm, A. Rezaei and N. Chalyavi, Asian J. Chem. 19, 5000 (2007).
- 10. A.R. Rod and E. Vessally, Asian J. Chem., 19, 1709 (2007).
- 11. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988).
- 12. A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- 13. M.J. Frisch, et. al., Gaussian 98, Revision A. 6, Gaussian Inc., Pittsburgh PA (1998).

(*Received*: 15 May 2008; *Accepted*: 1 October 2009) AJC-7921