
INTRODUCTION

Antiferroelectric and ferroelectric materials have got
promising applications such as high permittivity capacitors,
peizo-electric, transducers, modulators and deflectors, pyro-
electric detectors, storage and laser devices and sensors.

Tin chloride dihydrate (SnCl2·2H2O) undergoes a peculiar
isostructural and order-disorder type of phase transition at ca.

-57 ºC (from space group P21/c to P21/c). This uncommon
behaviour has drawn particular attention for the study of static
and dynamic properties of phase transition in this crystal. The
cell parameters at room temperature are a = 9.31 Å, b = 7.25 Å,
c = 8.9Å and β = 114.9º.

Experimental investigations have been carried out by
many workers on tin chloride dihydrate crystal. Kiriyama et al.1

have carried out X-ray diffraction. Kiriyama et al.2 and
Youngblood et al.3 have carried out neutron diffraction. Matsuo
et al.4,5 have carried out heat capacity measurements.
Mognaschi et al.6 have carried out dielectric and NMR experi-
ments on tin chloride dihydrate crystal. Wang et al.7 and Satija
et al.8 have carried out Raman and Brillouin spectra studies.
These experiments showed the order- disorder transition in
this crystal. This transition is associated with ordering of pro-
tonic positions in 2D layers of water molecule. Theoretical
studies to understand mechanism of transition in tin chloride
dihydrate crystal were initiated by Salinas and Nagle9,10 and
by Banerjee et al.11. Banerjee et al.11 have considered two sub-
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lattice pseudospin-lattice coupled mode model along with a
fourth-order phonon anharmonic intrection term. They have
not considered third-order phonon anharmonic interaction
term. Moreover they decoupled the correlations at an early
stage.

In the present study, third and fourth order phonon
anharmonic terms12,13 have been added in the two-sub-lattice
pseudospin-lattice coupled mode model11 for tin chloride
dihydrate crystal. By applying double-time thermal Green's
function method13 expressions for shift, width, renormalized
soft mode frequency, dielectric constant and loss tangent have
been evaluated. By fitting model values in expressions,
numerical values of soft mode frequency, dielectric constant
and loss tangent have been calculated.. Theoretical results have
been compared with experimental results of Mognaschi et al.6.

THEORY

Model hamiltonian and Green's fuction: For tin chlo-
ride dihydrate crystal, the extended two-sublattice pseudospin
lattice coupled mode model11, along with third- and fourth-
order phonon anharmonic interaction terms12,13 is expressed
as:
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where Ω is proton tunnelling frequency, Sz and Sx are compo-
nents of pseudospin variable, S and Jij is interaction between
same lattice and Kij is interaction between different lattices,
Vik is spin-lattice interaction and Ak and Bk are position and
momentum operators, ωk is harmonic phonon frequency V(3)

and V(4) are third- and fourth-order atomic force constants
defined by Semwal and Sharma12.

Following Zubarev14, we consider the evaluation of
Green's function (GF)
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Differentiating eqn. 2 with respect to time t and t' twice
using eqn. 1, Fourier transforming and applying Dyson's
equation approach one obtains
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The Green's function (GF) (3) becomes
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where renormalized frequency Ω
~ , in the lowest approximation

is given as:
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and polarization operator P(ω) (that is second terms of eqn. 4)
is given as:
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In order to evaluate correlation functions, it is assumed
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The higher order Green's functions (GFs) in eqn. 7 are
evaluated using symmetric decoupling scheme <abcd> = <ab>
<cd> + <ac> <bd> + <ad> <bc>. In this way P(ω) of eqn. 7 is
evaluated.

Width, shift and soft mode frequency

For a vanishingly small quantity m, P(ω) can be expressed
in terms of its real and imaginary parts using formula
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→ . The real part is known as shift ∆(ω)

and the imaginary part is called width, Γ(ω). From eqn. 7 one
obtains shift and width as: Spin shift
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spin-width
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spin-lattice coupled shift
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and spin lattice coupled width
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In eqns. 14 and 15 Γk(ω) is the phonon width due to third
and fourth-order phonon anharmonic, interactions and using
last three terms of Hamiltonian (1) which is obtained as
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Phonon shift is given as:
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and phonon width is given as:
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In eqns. 17 and 18 Re and Im stand for real and imagi-
nary parts respectively. nki = cot hβ ω~ ki and p stands for prin-
cipal part.

The value of Green's function, (GF) (5) by putting value
of P(ω) in eqn. 7, is finally obtained as:
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Solving eqn. 20a self consistently, one obtains renormalized

frequency 
−

Ω̂ as
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Transition temperature: The frequency 
−

Ω̂  is the

antiferroelectric mode frequency which critically depends on
temperature and is responsible for phase transition.

The Curie temperature, Tc, can easily be obtained by
applying the stability condition of paraelectric phase i.e.

,0ˆ →Ω
−

as cTT → , which gives at once
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J* is renormalized exchange interaction constant.
Dielectric constant and loss tangent: The response of

crystal to electric field is expressed by electrical susceptibility
χ which using Zubarev's14 formalism is expressed as;
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→ (24)

where N is number of dipoles having dipole moment µ in the

unit volume. Using relation πχ+∈= 41 , the expression for
dielectric constant ∈  with the help of eqns. 19 and 24 can be
expressed as:
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The dissipation of power can conveniently be expressed
in dielectrics as tangent loss (tan δ) as:
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Using eqns. 25 and 26a one obtains
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At microwave frequencies, Ω〈〈ω ˆ , eqn. 26b reduces to
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Numerical calculations and results: By using model
values of various quantities in expressions from literature
(Table-1) temperature dependence of <Sx

1>, <Sx
2>, <Sx

1>,
<Sz

2> width, shift antiferroelectric mode frequency, dielectric
constant and loss tangent for tinchloride dihydrate crystal have
been calculated. Calculated variation tenperature of antiferro-
electric mode frequency and loss tangant are compared with
experimental temperature variation of these are shown in
Figs. 1-3.

RESULTS AND DISCUSSION

The two sublattice model along with phonon anharmonic
interaction terms explains the features of phase transition and
dielectric properties of tinchloride dihydrate crystals. Earlier
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authors11 have decoupled the correlation functions at an early
stage. Therefore, some important interactions disappeared from

their results. The soft mode frequency 
−

Ω̂ of Banerjee et al.11

contains terms like )(ps ω∆
−  (given in eqn. 15). But our soft

mode frequency 
−

Ω̂  contains extra tems in 
k

~~ω and ( )ωΓk

(appearing in eqn. 18a). These extra terms are 
2

21
3 )k,k,k(V −

given in ∆k(ω) and Γk(ω). Our Ω
~~ is different from corresponding

value of Ω
~~  in Banerjee et al.10 results. These terms differentiate

our expressions with those of Banerjee et al.11. The inclusion
of third-order phonon anharmonic interaction is quite impor-
tant to predict correct temperature dependences of ferroelectric
and dielectric properties of tinchloride dihydrate crystal. Fig.
3 shows that loss of tangent first increases with temperature
upto Tc and then sharply decreases showing Curie-Weiss law.
Loss tangent increases linearly with frequency i.e. it does not
give relaxational behaviour. If width, shift and third order
interaction, from the expressions are neglected, the results
reduce to the results of Banerjee et al.11. The theoretically
obtained temperature dependences of soft mode frequency,
dielectric constant and loss tangent (Figs. 1-3) compare well
with the experimental data of Mognaschi et al.6. Our data are
in better agreement with experiment6 as compared to the
calculated data of Banerjee et al.11. Dielectric loss first increases
with temperature below Tc. Above Tc it decreases. A transverse
radiation field derives the low-lying transverse mode of the
material in a forced vibration. Energy is transferred from the
electromagnetic field to this lattice mode and is them degraded
into other vibrational modes of the material. Due to an
harmonic phonon interactions, decay processes take place. For
example, third-order interaction leads to the decay of a virtual
phonon into two real phonons or the virtual phonon may be
destroyed by scattering a thermally excited phonon. Similar
processes occur for fourth order interactions.

Conclusion

Present study reveals that the two-sublattice pseudospin
lattice coupled mode model along with third and fourth-order
phonon anharmonic interaction terms explains well the tempe-
rature dependences of soft mode frequency, dielectric constant
and loss tangent in tinchloride dihydrate crystal. Present theore-
tical results fairly agree with experimental results of Mognaschi
et al.6. Present results with some little or no changes may also
be applicable to other similar crystals such as Rochelle salt,
triglycine sulphate and squaric acid crystals. Calculations on
these compounds are in progress in our laboratory.
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TABLE-1 
MODEL VALUE OF PHYSICAL PARAMETER FOR SnCl2·2H2O CRYSTAL GIVEN BY Banrjee et al.11 

ωk
2 (cm-2) Ω (cm-1) J (cm-1) K (cm-1) Vk (cm-3/2) Tc (K) C (K) µ (1018 esu) J* (cm-3) 

1024 5 3785.61 1261.87 24.44 219.5 126.7 2.66 8369 
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