

NOTE

Extraction and Characterization of Naringenin from Psuedohandellia umbelliferae

JALIL LARI, HOOSHANG VAHEDI^{*} and ROUHOLLAH BOLANDI

Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran

*Corresponding author: Fax: +98 511 8683001; Tel: +98 511 8683002; E-mail: h_vahedi@pnu.ac.ir; hooshangvahedi@yahoo.co.uk

(Received: 20 November 2010;

Accepted: 30 August 2011)

AJC-10327

Pseudohandellia umbelliferae collected from Kalat Naderi area, Khorasan Razavi province, Iran was investigated for the presence of naringenin, 5,7-dihydroxy 2-(4-hydroxyphenyl)chroman-4-one by spectroscopic methods.

Key Words: Pseudohandellia umbelliferae, Chromatography, Soxhlet apparatus, Naringenin.

Pseudohandellia umbelliferae is a plant with a 20-100 cm high, leaves greyish with loose cobwebby tomentum, main rootstock thickened and heads numerous in dense umbel-shaped compound corymbs, flowering between May to July¹. Following our research on the chemical constituents of this plant², we describe in this paper the isolation and characterization of a flavonoid, narigenin, from methanol extract of the aerial parts of *Pseudohandellia umbelliferae*.

Melting point was measured on a Bamstead/electrothermal 9200 melting point apparatus. ¹H and ¹³C NMR spectra were recorded in DMSO, on a Brucker AC 100 MHz NMR spectrometer. Chemical shift is expressed in units relative to TMS ($\delta = 0$) as internal standard. Mass spectra was recorded on a Shimadzu GC-17A spectrometer operating at 70 eV in electron impact mode. FT-IR was performed on a Shimadzu 8400.

The aerial parts of *Pseudohandellia umbelliferae* were collected from Kalat Naderi area, Khorasan Razavi province, Iran, in April 2006 by Mr M.R. Joharchi. A voucher specimen is deposited at the Herbarium of the Research Institute of Forests and Rangelands, in the University of Ferdowsi, Mashhad, Iran.

Extraction and isolation: The aerial parts of *Pseudo-handellia umbelliferae* are dried at ambient temperature before being powdered. The powder was successively extracted with methanol in a Soxhlet apparatus over 6 h. The organic solvent was evaporated to dryness in vacuum to yield the corresponding extracts (11 %, w/w).

Phytochemical tests were carried out on the methanol extract and on the powdered specimens to identify the constituents using standard procedures³⁻⁵. The tests revealed the presence of a flavonoid.

Thin layer chromatographic (TLC) analyses were made on 0.25 mm thick silica gel 60G (Merck, 7731), prepared on glass plates. A mixture of chloroform/methanol (2:3) proved to be the best eluent for the TLC analysis. The plate was examined under UV light at 254 nm. Only one of the spot ($R_f = 0.8$) out of four was observed as a dark blue colour. The methanol extract was also chromatographed on a silica gel column, using the same gradient elution system as mentioned above, to yield a pale yellow crystals (200 mg), m.p. 239-241 °C, IR (film, v_{max}, cm⁻¹): 3600 (OH), 3400 (OH), 3050, 1650 (C=O) 1600 (C=C), 1250, 1300, 840, 730 and 690; ¹H NMR (100 MHz, DMSO) δ 2.6 (d, 1H), 3.2 (1H), 5.5 (dd, 1H, Ar), 6 (s, 2H, Ar), 6.7 (d, 2H, J = 8.5, Ar), 7.4 (d, 2H, J = 8.5, Ar), 9.7 (s, 1H, OH), 12.1 (s, 2H, OH); ¹³C NMR (100 MHz, DMSO) δ, 196 (C=O), 166, 163, 162, 157, 129, 128, 115, 101, 95, 94, 78, 42; MS (EI)(m/z, %) 272 [M⁺] (100), 179 (23), 166 (23), 153 (81), 124 (31), 120 (53), 107 (30), 91 (31), 69 (29), 50 (5) and 39 (26); UV(λ_{max} , MeOH, nm) 219,289, 330; which is a typical

absorptions of flavanones and carbonyl group (1650 cm⁻¹). The ¹³C NMR spectrum showed the resonance of six aromatic methine carbons, C-3', C-5' (δ 115), C-2', C-6' (δ 128), C-8 (δ 94) and C-6 (δ 95), six quaternary aromatic carbon at C-7 (δ 166), C-5 (δ 163), C-8a (δ 162), C-4a (δ 101), C-1' (δ 128) and C-4' (δ 157), an oxymethine carbon signal C-2 (δ 78), an methylene carbon C-3 (δ 42) and finally a carbonyl carbon C-4 (δ 196).

Conclusion

Naringenin, was extracted and isolated from the aerial parts of *Pseudohandellia umbelliferae* using methanol. The chemical structure of narigenin was characterised by spectroscopic methods.

ACKNOWLEDGEMENTS

The authors are grateful to Mr. M.R. Joharchi for furnishing plant material and also to Payame Noor University for financial support.

REFERENCES

- B.K. Shishkin and E.G. Bobrov, Flora of the U.S.S.R., Bishen Singh, Mahendra Pal Singh and Koeltz Scientific Books, U.S.S.R., XXVI (1995).
- 2. J. Lari, H. Vahedi and Z. Hashemi, Asian J. Chem., 21, 5783 (2009).
- 3. P.B. Mallikharjuna, L.N. Rajanna, Y.N. Seetharam and G.K. Sharanabasappa, *E-J. Chem.*, **4**, 510 (2007).
- 4. H.O. Edeoga, D.E. Okwu and B.O. Mbaebie, *Afr. J. Biotechnol.*, **4**, 685 (2005).
- 5. D.N. Onwukaeme, T.B. Ikuegbvweha and C.C. Asonye, *Trop. J. Pharm. Res.*, **6**, 725 (2007).