
INTRODUCTION

Raman spectroscopy is a noninvasive analytical technique

proven to be valuable in diverse applications. However, Raman

spectra often suffer from the fluorescence interference which

can be orders of magnitude more than the Raman peaks. This

leads to a broad background under the Raman peaks. Distorted

background results in incorrect integration or peak height

determination which can be central to many spectral applica-

tions. Hence it is necessary to separate the Raman peaks from

the background.

Both instrumental and computational methods have been

proposed to perform background removal. Among instrumental

methods, frequency-shifted excitation1,2 and time gating3 have

been proven to be effective in rejecting fluorescence. But

additional instrumental modification is required. Compu-

tational methods including first- and second-derivatives4,

frequency-domain filtering5, wavelet transformation6, optimi-

zation7,8, polynomial fitting9,10 and its improved versions11,12

are substituted strategies with wide application. For the Raman

scattering is intrinsically a series of Lorentzian peaks, most of

the computational methods are based on the fact that it varies

more quickly than the background does.

Since the polynomial fitting has the ability to approximate

the background and meanwhile retain the contours of the

Raman peaks, it has become a common background removal

method. Simply fitting a polynomial curve to a raw Raman

Automated Background Subtraction Algorithm for Raman

Spectra Based on Iterative Weighted Least Squares

H. RUAN and L.K. DAI
*

State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, P.R. China

*Corresponding author: Fax: +86 571 87952127; Tel: +86 571 87951894; E-mail: lkdai@iipc.zju.edu.cn

Asian Journal of Chemistry;   Vol. 23, No. 12 (2011), 5229-5234

(Received: 15 October 2010; Accepted: 10 August 2011) AJC-10260

A major problem in Raman spectroscopy is that the spectrum is often suffered from intrinsic fluorescence which is orders of magnitude

greater than the Raman signal. Background subtraction is essential for further analysis, particularly for quantitative analysis using multivariate

calibration. In this paper, we propose a background removal algorithm which approximates the background by a polynomial and estimates

the polynomial coefficients by iterative weighted least squares. The performance of the algorithm accompanied with two comparative

methods are evaluated both on simulated and real Raman spectra. The results show that the proposed algorithm provides the best result

using R2 between the actual and extracted Raman peaks. It also improves the performance of background removal in quantitative Raman

spectroscopy. Further more, the algorithm is least dependent on the choice of polynomial order.

Key Words: Raman spectroscopy, Background subtraction, Polynomial fitting, Iterative weighted least squares.

spectrum in a least-squares manner9 does not provide accurate

results because of the negative values in the extracted Raman

spectra. To address the limitation, Lieber and Mahadevan-

Jansen proposed the modified polynomial fitting (called

ModPoly) method that fits the data in an iterative way and

finally obtain the polynomial that beneath the raw spectrum10.

The ModPoly method has now been widely used. Its main

limitation is that, peak-free regions which are slightly higher

than the fitted polynomial will be replaced by the fitted poly-

nomial and thus generate incorrect result. This may lead to an

upturn at the fringe of the extracted Raman spectra. The

improved modified multi-polynomial fitting (called I-Mod-

Poly) is a variation of the ModPoly method11. It suggests that

points beneath the sum of the fitted value and a standard

deviation will be incorporated in the next fitting procedure. It

reduces the limitation of ModPoly, but inclines to yield Raman

signal with negative value. Thus the further quantitative analysis

is biased.

In this paper we present a new background subtraction

algorithm that approximates the background by a polynomial

and estimates the polynomial coefficients by iterative weighted

least squares (IWLS). It is an extension of the ModPoly in

methodology. Comparative study shows that this algorithm

produces stable and reliable result in an automated way. It

should be noted that this paper only dealing with the back-

ground subtraction. It is assumed that all the spectra applied

by iterative weighted least squares have been denoised.



Background subtraction by iterative weighted least squares

Modeling: To formulate the background removal algo-

rithm, we should define a model of Raman spectra. Given a

set of points in y = (y1, ..., yN)T in yN that denote an N-point

spectrum, it can be considered as a combination of Raman

peaks, background and noise,

y = s + b + n (1)

where s denotes the ideal Raman spectrum, n denotes the physical

noise and b denotes the background. Because the background

is usually a broad fluorescence, it is sufficient to approximate

it with a pth order polynomial,

b = Tβ (2)

where T and β represent the wavenumber Vandermonde

matrix and the polynomial coefficient vector respectively,

defined as
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To perform background removal, the estimation of β is

required. Parameter estimation techniques consider a measure-

ment equation of the form

y = Tβ + r (4)

where r is an N × 1 vector of residual.

Iterative procedure: The IWLS is based on weighted

least-squares which estimate β by minimizing

(y–Tβ)T W(y–Tβ) (5)

where the weight matrix is defined as

W = diag(w1, w2, ... wN); wi ≥ 0, i = 1,2···N (6)

For a given weight matrix W, the solution for eqn. 5 is

given by

β = (TT WT)–1 TT Wy (7)

To avoid the influence of Raman peaks, an iterative

weighted least-squares procedure was used. We initial the

weight W with an identity matrix and solve eqn. 7 for this

weight. Then we use the solution β to define a new weight

and repeat this process. The definition of a new weight is the

core of iterative weighted least squares.

Definition of the new weight: The new weight for iteration

is defined by a weight function. Since we assume that the spectrum

has been denoised, it can be considered as a combination of

Raman peaks and background. The design of weight function

should remain the background yet exclude Raman peaks.

Based on Lieber and Mahadevan-Jansen's method10, we propose

a new algorithm which incorporates a function of the coarseness

of the residual to define the new weight.

The residual is obtained by r = y – Tβ, where β is the

solution of a given weight. A moving window standard devi-

ation of the first derivative of the residual is adopted to represent

its coarseness. Specifically, given a series of numbers r =

(r1, ..., rN)T that represent the residual, we firstly calculate its

first derivative d = (d1, ..., dN)T  by numerical differentiation

method. For a fixed window with 2M + 1  points, the coarseness

of the residual is defined as

N1i,)dd(
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where )i(
d  is the mean value for (di-M, ···, di+M), M is a user

defined parameter that controls the width of the moving

window. Finally, the coarseness c = (c1, ···, cN)T is normalized

to range between 0 and 1.

For a raw spectrum shown in Fig. 1(a), it was fitted by a

5th order polynomial. The residual and its 1st derivative are

shown in Fig. 1(b) and (c). Fig. 1(d) shows the coarseness of

the residual where the parameter M is set to 5.
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Fig. 1. (a) The raw spectrum, (b) the residual of the spectrum, (c) the first

derivative of the residual, (d) the coarseness of the residual

After we have obtained the coarseness of the residual, the

new weight W ∈ ?n×n  is defined in eqn. 6 and

wi = ϕ(ri) × ψ(ci) (9)

where r is the residual, c is the coarseness of the residual.

The function ϕ(·) calculates the weight according to the

residual, which can be defined as
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where ε > 0 and close to 0.

The function ψ(·) calculates the weight according to the

coarseness of the residual.
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where η is the threshold.

Termination criteria: Since the algorithm excludes regions

with Raman peaks, convergence is an important issue. We use

the root-mean-square of the difference between β(n) and β(n+1)

as the termination criteria, where β(n+1) and β(n) represent the

solution of step n and (n + 1) respectively. Once this value is

small enough to reach a threshold, the iteration procedure

is terminated. Empirically, the iterative procedure reliably

converges in about 10 iterations. At the point, β(n+1) is considered

as an optimized estimation of the background. Subtracting the

estimated background from the raw spectrum yields a true

Raman signal.
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Summary of the algorithm: The computational proce-

dure used to subtract background for Raman spectra is

summarized as follows:

Step-1: Given a raw spectrum described by y = (y1, ···,

yN)T, set the polynomial order p, form the affinity matrix T

according to eqn. 3, initialize the weight matrix W ∈ ?n×n with

an identity matrix.

Step-2: Repeat the following iterative process. (1) Estimate

the polynomial coefficient vector β by eqn. 7. (2) Calculate

the root-mean-square of the difference between β and the

result at the previous iteration. If the value is small enough to

reach a threshold, then go to Step-3. (3) Calculate the residual

and its coarseness by eqn. 8 and set the new weight W by

eqn. 9.

Step-3: Obtain the estimated background by β = Tβ, the

extracted Raman spectrum is given by y – b.

Simulations: In this section, we present a comparative

study of the IWLS, ModPoly10 and I-Mod-Poly11. A set of

synthetic spectra with known Raman and background contri-

butions is used to evaluate the three algorithms. Each spectrum

consists of a Raman signal and a background. They are gene-

rated with varying signal-to-background ratios (SBR). The

SBR is defined as the maximum peak height above background

divided by the difference between the maximum and minimum

background points13.

The Raman signal is generated as a series of Lorentzian

peaks,

∑
= ω+ω−ω
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where ω represents the Raman shift, ω0i is the position of the

peak center, A0i is the total area under the curve and ωLi is the

bandwidth of the peak at full-width at half maximum (FWHM).

The Lorentzian function parameters used for creating the

synthetic spectra are listed in Table-1. Fig. 2 shows the synthetic

Raman peaks.

TABLE-1 
LORENTZIAN FUNCTION PARAMETERS USED  

FOR CREATING SYNTHETIC SPECTRUM 

ω0 ωL A0 

730 13 12 

763 20 9 

890 15 15 

930 12 8 

1100 8 20 

1260 9 11 

1280 9 9 

1310 15 20 

1480 10 67 

1658 11 30 

 
The Gaussian and Sigmoid backgrounds are used in this

study. Both of them are non-polynomial. The Gaussian back-

ground is defined as

2
g2

2)gµ(

e
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where σg = 400, µg = 1000.
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Fig. 2. Synthetic Raman peaks created using a series of Lorentzian peaks

The Sigmoid background is defined as:

s
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where σs = 100, µs = 1200.

The two types of backgrounds are shown in Fig. 3. They

are then multiplied by a factor to synthesize the spectra at

specified SBR. The synthesized spectrum can be written as:

 y(ω) = L(ω) + δ1G(ω) + δ2S(ω) (15)

where δ1 and δ2 are determined by the SBR of spectrum.
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Fig. 3. Two types of backgrounds, solid line for Gaussian background,

dotted line for sigmoid background

The spectra are submitted to ModPoly, I-Mod-Poly and

the IWLS algorithm proposed in this paper. The coefficient of

determination (R2) between the actual and extracted Raman

peaks is used. All the three fitting methods involve a user

defined parameter p that specifies the fitting polynomial order.

To investigate the influence of this parameter, two spectra with

identical SBR (SBR = 0.1) but two distinct backgrounds

(Gaussian and sigmoid) are used in the study. The two spectra

are shown in Fig. 4. We choose the polynomial order p ranging

from 5 to 12. For each choice, the ModPoly, I-Mod-Poly and

the IWLS fitting algorithms are applied respectively, a series

of results are shown in Figs. 5 and 6. The IWLS parameters

are empirically chosen as ε = 0.01 and η = 5 %.
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Fig. 4. Synthetic spectra with Gaussian background (solid line) and sigmoid

background (dotted line)
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background

As shown in Figs. 5 and 6, the optimal polynomial order

varies according to the background shape. For the spectrum

with Gaussian background, all the three methods achieve the

optimum performance at p = 12. But for the spectrum with

sigmoid background, the optimal polynomial order is 10.

Increasing the order leads to degradation of performance for

ModPoly and I-Mod-Poly. On the contrary, IWLS performs

consistently as polynomial order increase. Using high order

polynomial in IWLS algorithm accurately retains the Raman

spectral component. Since the shape of background varies in

practice, choosing an order that best approximates the back-

ground become problematic to ModPoly and I-Mod-Poly. In

comparison with them, IWLS is much less dependent on the

polynomial orders. The extracted spectra by the three methods

with optimal order and high order (p = 12) are shown in Figs.

7 and 8.
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Fig. 7. Extracted spectra from the synthetic spectra with Gaussian

background. The solid line and dotted line are for 7th order and 12th

order polynomial extracted spectra respectively
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Fig. 8. Extracted spectra from the synthetic spectra of sigmoid background.

The solid line and dotted line are for 10th order and 12th order

polynomial extracted spectra respectively

A second comparative study is performed using a series

of synthetic spectra at different SBR (0.001, 0.01, 0.1, 1 and

10). According to the results obtained, we use 7th and 10th poly-

nomial to approximate the Gaussian and Sigmoid background

respectively. The results are shown in Tables 2 and 3. For high
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TABLE-2 
R2 FOR SIMULATION OF SPECTRA WITH GAUSSIAN 
BACKGROUND, HIGHLIGHTED IS THE ALGORITHM  

WITH HIGHEST R2 VALUE FOR A SPECIFIC SBR 

 SBR 

 0.001 0.01 0.1 1 10 

ModPoly 0.5627 0.9812 0.9987 0.9980 0.9980 

I-Mod-Poly 0.7250 0.9792 0.9912 0.9916 0.9916 

IWLS 0.7129 0.9844 0.9978 0.9981 0.9981 

 
TABLE-3 

R2 FOR SIMULATION OF SPECTRA WITH SIGMOID 
BACKGROUND, HIGHLIGHTED IS THE ALGORITHM  

WITH HIGHEST R2 VALUE FOR A SPECIFIC SBR 

 SBR 

 0.001 0.01 0.1 1 10 

ModPoly 0.6030 0.8042 0.9841 0.9960 0.9975 

I-Mod-Poly 0.7273 0.8287 0.9735 0.9885 0.9908 

IWLS 0.7106 0.8289 0.9865 0.9971 0.9977 

 
SBR spectra, IWLS and ModPoly are better then I-Mod-Poly.

Both produce result that R2 > 0.995. For low SBR spectra,

I-Mod-Poly and IWLS produce almost identical results, which

are much better then ModPoly.

EXPERIMENTAL

In quantitative Raman spectroscopy, particular in multi-

variate calibration, the performance of background subtraction

is critical to the final result. A slight distortion of the Raman

peaks will yield considerable estimation errors. In this section,

IWLS is applied to perform background subtraction for Raman

spectra of gasoline. The extracted spectra are then used to

determine the contents of methyl tertiary butyl ether (MTBE)

in gasoline. Partial least squares (PLS) and cross-validation

using leave-one-out (LOO) approach are applied to evaluate

the regression model and background subtraction algorithm.

Forty gasoline samples with known methyl tertiary butyl

ether contents are prepared. The intensity of the background

varies according to the concentration of fluorescent substance

in gasoline. Raman spectra are recorded using a fiber-probe-

based Raman system. In the system, a 500 mW, 785 nm diode

laser (B&W Tek, USA) is used for sample excitation. The laser

is coupled to a 200 µm core diameter excitation fiber contained

in an optical probe (InPhotonics, USA). The Raman signal is

collected by the probe and delivered to a spectrometer

(QE65000, Ocean Optics, USA) by a 400 µm core diameter

fiber. The spectrometer is configured with a 25 µm slit, a 1200

lines/mm grating and a deep-depletion back-illuminated,

thermoelectrically cooled CCD detector of 1024 × 58 pixel

count. All the spectra are recorded with an integration time of

15 s. Then the Savitzky-Golay filter with a half-width of 5

pixels is applied for denoising.

RESULTS AND DISCUSSION

Fig. 9 displays the Raman spectra of the prepared gasoline

samples. The overall signal changes obviously in several cases

due to the fluorescence. Ideal background subtraction method

is desired because even a slight distortion of Raman signal

has a significant effect on quantitative analysis of a test sample.

Fig. 10 shows the background removal for a typical spectrum

using a 5th-, 6th- and 7th-order polynomial. The ModPoly

method produces desirable result using a 5th-order polynomial.

But obvious artifacts at upper spectral boundary region (1700-

2000 cm-1) are observed when using a 7th-order polynomial.

The results of I-Mod-Poly contain several regions with negative

value, which is non-physical and consequently not suitable

for quantitative analysis. For the IWLS algorithm, artifact peaks

at the spectral boundary regions are not observed. Using diffe-

rent polynomial orders, the extracted Raman spectra are

desirable and almost identical. The algorithm is the least

dependent on the choice of polynomial order.
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Fig. 9. Raw spectra of the gasoline samples

Raman shift (cm–1)

In
te

n
s
it

y
 (

a
rb

. 
u

n
it

s
)

500 1000 1500 2000

0.5

1.0

1.5

2.0

(a)

Raman shift (cm–1)

In
te

n
s
it

y
 (

a
rb

. 
u

n
it

s
)

500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1.0

(b)

Vol. 23, No. 12 (2011) Subtraction Algorithm for Raman Spectra Based on Iterative Weighted Least Squares  5233



Raman shift (cm–1)

In
te

n
s

it
y

 (
a

rb
. 
u

n
it

s
)

500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1.0

(c)

Raman shift (cm–1)

In
te

n
s
it

y
 (

a
rb

. 
u

n
it

s
)

500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1.0

(d)

Fig. 10. (a) Raman spectrum of a sample. (b), (c) and (d) background

subtraction with 5th-, 6th- and 7th-order polynomial respectively.

For each figure, solid bold line, solid thin line and dashed line are

for IWLS, ModPoly and I-Mod-Poly respectively

All of the extracted spectra by IWLS with a 6th-order poly-

nomial are shown in Fig. 11. Partial least square and leave-

one-out cross-validation is applied to evaluate the regression

model and background removal methods. The PLS factors are

set to 4 according to Cooper's work14. Fig. 12 shows the evalu-

ation results of the models which are built by the extracted

spectra using the three background removal methods. The stan-

dard error of cross-validation (SECV) is 3.3, 8.6 and 19.7 %

for IWLS, ModPoly and I-Mod-Poly respectively. The IWLS

algorithm gives a satisfactory calibration with low SECV.
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Fig. 11. Extracted Raman spectra of all gasoline samples using IWLS
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Conclusion

This paper presents an automated background subtraction

algorithm for Raman spectra. The algorithm approximates the

background by polynomial and estimates the polynomial coeffi-

cients by iterative weighted least-squares (IWLS). Simulation

comparison study shows that the IWLS provide the best results.

Further more, IWLS is the least dependent on the choice of

polynomial order. To prove the improvement brought by this

algorithm, we have analyzed the methyl tertiary butyl ether

contents of gasoline samples. Partial least sqaure calibration

of the extracted Raman spectra by IWLS gave the lowest SECV.

The experiment results demonstrated that the IWLS is a stable

and reliable automated background subtraction algorithm for

quantitative Raman spectroscopy analysis.
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