
INTRODUCTION

Quantitative structure property/activity (QSPR/QSAR)

studies are unquestionably of great importance in compu-

tational chemistry and has been widely used in the prediction

of physico-chemical properties and biological activities of

organic compounds. The general idea of QSAR and QSPR is

that property/activity of a new untested molecule can be readily

estimated from the molecular structure of similar compounds

whose properties/activities have already been determined. In other

words, we may study the correlation between the properties/

activities of the molecules and their structures. If a good corre-

lation is found, then it would be easy to determine the properties/

activities of various compounds, including those not yet syn-

thesized1. Quantitative structure property relationship studies

are performed on the basis of the correlation between the

experimental values of the property and molecular descriptors

reflecting the molecular structure of the respective compounds.

Rigorous testing of the predictive power of the equations

obtained is possible2,3. Hence the QSPR approach is a general

and reliable method to predict various physico-chemical prop-

erties. To develop a QSPR model the following steps are usually

involved i.e., data collection, molecular geometry optimization,

molecular descriptors generation, descriptors selection, model

development and finally model performance evaluation. One

of the important problems in QSPR is the description of
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molecular structures using molecular descriptors, which can

include structural information as much as possible. At present

there exist a great number of molecular descriptors that

encode constitutional, topological, geometry and electronic

features of organic compounds3-5. Among various structure

descriptors, those derived from molecular structure alone have

a particular advantage of the possibility to calculate them based

only on the molecular structural feature and to be applicable

to different families of compounds. After the calculation of

molecular descriptors, linear methods, such as multiple linear

regression (MLR) and non linear neural network can be used

in the mathematical relationship between the molecular

descriptors and the property to be predicted.

Liquid viscosity of organic compounds is one of the most

significant transport property for many studies related to the

transfer or movement of bulk quantities of liquids and simula-

tion of the processes in chemical and petroleum industries6,7.

Accurate experimental viscosity measurement of ever-growing

number of actual and potential chemical products is time

consuming and laborious8. On the other hand, a statistically

significant QSPR approach, that requires only chemical struc-

ture data could serve as a tool to predict reliable viscosity data

in a fraction of the time and expense. Numerous QSPR models

for predicting the liquid viscosities have been proposed using

fixed molecular descriptors. The concept of the variable

molecular descriptors was proposed as an alternative way of



characterizing heteroatoms in molecules. The idea behind the

variable molecular descriptors is that the variables are deter-

mined during regression fitting so that the standard of estimate

for a studied property (viscosity) in as small as possible9.

Several molecular descriptors have already been tested in their

variable forms in QSPR. Here we report the use of the variable

Zagreb index VM2 in the structure-viscosity modeling of

alcohols.

EXPERIMENTAL

In parametric methods, one series of digital variables

named molecular descriptors were used for evaluation of mole-

cules properties. By using a method either multi linear regre-

ssion (MLR) or a non-linear method such as associative neural

network (ASNN), which states the relation between molecule

structure and relative variable10.

Molecular descriptor generation: For modeling, the

descriptors which have relation with considered property have

to be selected. The descriptors which are used in the present

study are listed below: (1) Variable Zagreb index (VM2), (2)

Number of hydroxyl groups (NOH), (3) Number of carbon

atoms (Nc), (4) Molecular weight (MW).

Variable Zagreb index: Topological indices are charac-

terized by fixed numerical values, which are independent of

property considered11. Hence they can be computed once the

bonding pattern of molecule is known. In contrast, the variable

Zagreb index vM2 a flexible descriptor depends on the property

considered. The variable Zagreb index vM2 offers a powerful

tool for the study of physico-chemical properties.

Here we report the uses of the variable Zagreb VM2 index

in the structure-viscosity modeling of alcohols. The variable

Zagreb index is calculated as below12.
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(1)

where VM2 denote variable Zagreb M2 index, d(i) is the degree

of valence vertex, d(i) d(j) is the weight of edges i-j, λ is the

variable parameter.

For example from the hydrogen suppressed graph of

2-methyl 1-propanol (Fig. 1) we obtained:

VM2 = (1 × 3)λ + (2 × 3)λ + (5 × 2)λ + (1 × 3)λ (2)

The numbers in the graph (Fig.1) represents degree of

valance vertex computed by valency of 'C' or 'O' minus number

of hydrogen atoms attached. A C++ program was developed

to calculate the variable Zagreb index for various λ values.

The structure of 35 considered alcohols were taken from the

work of Lide13.

Fig . 1. Graph representing molecular skeleton of carbon atoms and oxygen

atom for 2-methyl 1-propanol

The descriptor Nc and MW are constitutional descriptors

and NOH is a functional group calculated with E-dragon

software14.

Multi linear regression (MLR): MLR is one of the

earliest methods used for constructing QSPR/QSAR models,

but it is still one of the most commonly used one to date. The

advantage of MLR is simple form and easily interpretable

mathematical expression15. The selected descriptors were

employed with MLR to develop the linear model of the property

of interest, which takes the form:

Y= b0 + b1 x1 + b2 x2 +…+ bn xn       (3)

in this equation Y is the predicted property value of the

dependent variable, x1 to xn represent the specific descriptors,

while b1 to bn represent the coefficient of those descriptor,

b0 is the intercept of this equation. The software package

SPSS 11.0 for windows was used to implement multi linear

regression.

Artificial neural network (ANN): The growing interest

in the application of artificial neural network in computational

chemistry is a result of their demonstrated superiority over

the traditional models. Neural network were used in quantitative

structure property relationships studies to predict various physical

and chemical properties.

An artificial neural network is a information processing

paradigm composed of simple elements operating in parallel.

The connections of complex system among these elements

mostly determine the network functions. The ANNs are trained

to perform a particular function by adjusting the values of the

connections, or weights, between elements until a particular

input leads to a specific output.

The ANN consists of three layers, input layer, hidden layer

and output layer. These three layers are connected each other.

The input layer receives the input data (descriptors) outside

the network and sends them to the hidden layer. The hidden

layer contains interconnected neurons for the pattern recognition

and the relevant information interpretation for adjusting the

weights on the connections. Afterwards, the result from the

hidden layer are sent to the output layer for the output (prop-

erty). The neurons contain several functions and variable

including weights, non-linear transfer functions, methods to

add up all inputs and bias values. The sum of products of all

the inputs multiplying the weights and the bias values passes

through a non-linear transfer function as the output of each

neuron16.

Associative neural network(ASNN): The traditional arti-

ficial feed forward neural network is a memory-less approach

this means that after training is complete all informations about

the input patterns is stored in the neural network weights and

input data are no longer needed i.e., there is no explicit storage

of any presented example in the system. Contrary to that asso-

ciative neural network is a combination of memory based and

memory less methods. The recently proposed associative

neural network offers an elegant approach to incorporate

on the fly the user's data17. The ASNN is an extension of the

committee of machines that goes beyond a simple/weighted

average of different models. An ASNN represents a combination

of an ensemble of feed forward neural networks (memory less)

and the K-nearest neighbour technique (memory based). This
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method uses the correlation between ensemble responses as a

measure of distance among the analyzed cases for the nearest

neighbour techniques. This method uses the correlation

between ensemble responses as a measure of distance among

the analyzed cases for the nearest neighbour techniques. This

provides an improved prediction by the bias correction of the

neural network ensemble. An associative neural network has

a memory that can coincide with training set. If new data

become available the network further improves its predictive

ability and provides a reasonable approximation of unknown

function without a need to retrain the neural network ensemble.

This feature of the method dramatically improves its predictive

ability over traditional neural network and K-nearest neighbour

techniques.

In K-nearest neighbour approach, it keeps the entire

database of examples in memory and their predictions are based

on some local approximation of the stored examples. The neural

network can be considered global models, while the other

approach is usually considered local model. The developed

algorithm of ASNN is available online at18. In the present study,

the best model obtained from Multi linear regression analysis

was applied to ASNN for comparative study. The model

developed in this ASNN study were evaluated by the co-

efficient of correlation R2 which is the proportion of the

variance that could be explained by the model and root mean

square error (RMSE) of the predicted values to the experi-

mental values.

Over-all viscosity data of 35 alcohols in the present

investigation were obtained from the6,7. The compounds include

a diverse set of substituted alcohols. Name of the compounds

were presented in Table-1 and their viscosities are shown in

Table-2. In this work, we searched for the optimal value of λ.

In order to determine λ, we used the set of C1-C12 alcohols and

their viscosities. We considered the following two descriptor

relationship.

log (η) = a + b TI + cNOH (4)

where log(η) stands for logarithmic viscosity and TI for

Topological index (variable Zagreb index).

Then we use the three descriptor relationship.

log (η) = a + b TI + c NOH + d [1/Nc
2] (5)

Finally we tested the four-descriptor relationship.

log (η) = a + b TI + c NOH + d 1/NC
2 + e MW (6)

The structure-viscosity modeling was based on the

CROMRsel procedure9. This is a multivariate procedure, which

TABLE-1 

NUMERICAL VALUES OF THE VARIABLE ZAGREB INDEX VM2 FOR SELECTED VALUES OF λ 

AND OTHER DESCRIPTORS USED IN THE PRESENT WORK. 

λ S. 

No. 
Compound Name 

0.1 0.8 -0.1 -0.9 -1.4 -1.6 
NOH MW NC 1/NC

2 

1 Methanol 1.174619 3.623899 0.85134 0.234924 0.105061 0.076146 1 32.04 1 1 

2 2-Methyl propan-1-ol 4.687403 15.31899 3.422204 1.069346 0.5508 0.426853 1 74.12 4 0.0625 

3 2-Methyl butan-1-ol 5.843846 20.10089 4.298266 1.481875 0.841274 0.681132 1 88.2 5 0.04 

4 3-Methyl butan-1-ol 5.836102 18.35042 4.292755 1.356521 0.694387 0.535672 1 88.15 5 0.04 

5 2-Methyl butan-2-ol 5.949597 24.06761 4.227521 1.331593 0.735598 0.591697 1 88.15 5 0.04 

6 2-Methoxy ethanol 4.885944 20.83435 3.280815 0.71928 0.295633 0.209581 1 76.09 3 0.111111 

7 Ethanol 2.330699 8.050675 1.727361 0.661779 0.41874 0.354996 1 46.07 2 0.25 

8 2-Ethoxy ethanol 6.043575 25.68286 4.157866 1.162635 0.624012 0.501341 1 90.12 4 0.0625 

9 2-Ethyl hexan-1-ol 8.136682 24.90769 6.036338 2.006913 1.083499 0.85882 1 130.23 8 0.015625 

10 1-Propanol 3.479397 11.08211 2.597912 0.948954 0.562327 0.463815 1 60.1 3 0.111111 

11 2-Propanol 3.543266 13.54361 2.554682 0.831483 0.452163 0.357984 1 60.1 3 0.111111 

12 Propyn-1,2-diol 4.882299 21.63793 3.289011 0.784707 0.358569 0.267556 2 76.09 3 0.111111 

13 Propyn-1,3-diol 4.815248 18.68202 3.329758 0.826134 0.366796 0.267875 2 76.09 3 0.111111 

14 1-Butanol 4.628096 14.11354 3.468462 1.236128 0.705914 0.572633 1 74.122 4 0.0625 

15 2-Butanol 4.695147 17.06945 3.427716 1.194701 0.697687 0.572314 1 74.122 4 0.0625 

16 Butan-1,3-diol 6.030998 24.66936 4.159561 1.071881 0.502156 0.376374 2 90.122 4 0.0625 

17 1-Pentanol 5.776794 17.14498 4.339013 1.523303 0.849502 0.681452 1 88.15 5 0.04 

18 1-Hexanol 6.925492 20.17641 5.209563 1.810477 0.993089 0.790271 1 102.17 6 0.027778 

19 1-Heptanol 8.074191 23.20784 6.080114 2.097652 1.136676 0.89909 1 116.2 7 0.020408 

20 2-Heptanol 8.141242 26.16375 6.039367 2.056225 1.128449 0.89877 1 116.201 7 0.020408 

21 1-Octanol 9.322515 29.8184 6.88451 2.258533 1.200825 0.94398 1 130.23 8 0.015625 

22 1-Nonanol 10.47121 32.84983 7.75506 2.545707 1.344413 1.052799 1 144.25 9 0.012346 

23 1-Decanol 11.61991 35.88126 8.625611 2.832882 1.488 1.161618 1 158.28 10 0.01 

24 Allyl alcohol 10.03717 49.38654 6.377501 1.047125 0.340457 0.217467 1 58.03 3 0.111111 

25 Benzyl alcohol 3.479397 11.08211 2.597912 0.948954 0.562327 0.463815 1 108.14 7 0.020408 

26 Thiophenol 8.896384 48.78454 5.512055 0.834804 0.261323 0.164737 1 140.2028 7 0.020408 

27 Ethylene glycol 3.666549 15.65058 2.459207 0.53896 0.223209 0.159056 2 46.07 2 0.25 

28 Glycerol 6.169239 27.31465 4.054902 0.776421 0.282218 0.189116 3 92.1 3 0.111111 

29 Diethylene glycol 7.379425 33.28276 4.889712 1.039816 0.42848 0.305402 2 106.12 4 0.0625 

30 Pentane-1,5-diol 7.112644 24.74488 5.070858 1.400483 0.65397 0.485513 2 90.121 4 0.0625 

31 2-Ethyl hexane-1,3-diol 10.69661 39.92881 7.604328 2.308772 1.254141 1.007192 2 146.23 8 0.015625 

32 2-Methyl pentane-2,4-diol 8.501198 37.65486 5.78917 1.45452 0.675427 0.504257 2 216.32 12 0.006944 

33 2,2-Diethoxy ethanol 9.756451 43.31504 6.588371 1.663491 0.829283 0.647687 1 134.17 6 0.027778 

34 Triethylene glycol 11.0923 50.91494 7.320217 1.540672 0.633752 0.451747 2 150.17 6 0.027778 

35 2-Propyn-1-ol 3.772159 18.88798 2.386558 0.386626 0.125062 0.079779 1 56.06 12 0.006944 
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selects the best possible model among the set of models, the

criterion being the standard error of estimate.

The exponent for VM2 varied from λ = 1 to λ = -2, in steps

of 0.1 in order to detect the optimal values of λ, which the

variable Zagreb indices give the structure-viscosity models

with the lowest value of the standard error of estimate (SE)

and the highest value of the correlation co-efficient (R2).

RESULTS AND DISCUSSION

The overall performance of MLR is evaluated in terms of

standard error of estimate and the other parameters: correlation

co-efficient R2 and F is the result of Fisher's test. The models

were also cross-validated by using leave-one-out (LOO) proce-

dure. LOO procedure is a procedure usually used for evaluating

models stability. During LOO procedure each of N molecule

is taken away only once. Statistical parameters for the cross-

validated models are denoted by R2(cv) and SE(cv), where cv

stands for cross-validation procedure.

Result of MLR and cross validation model.

i. The best two Descriptor model.

 log(η) = 2.4788 VM2 
[λ = -1.6] +3.2980 NOH -10.327      (7)

N = 35

R2 = 0.949, SE = 0.40083,

F = 300.633

R2 (cv) = 0.95, SE(cv) =0.393.

ii. The best three descriptor model.

log(η) = 2.2791 VM2
[λ =-1.4] + 3.3492 NOH- 0.003787

MW-10.258      (8)

N = 35

R2 = 0.952, SE = 0.3972,

F = 206.238

R2(cv) = 0.960, SE(cv) = 0.3995.

iii.The best four descriptor model.

log(η) = 2.1447 VM2
[λ = -1.4] + 3.34 NOH - 0.005MW-1.1948

(1/Nc2)-9.868217      (9)

N = 35

R2 = 0.962, SE = 0.35878, F = 190.09, R2 (cv) = 0.968,

SE(cv) = 0.3333.

The above results shows that variable Zagreb index

produce better models. The best linear model contains four

TABLE-2 

THE RESULT OF MLR AND ASNN ANALYSIS AND CALCULATED VALUES OF VISCOSITIES. THE  
NUMBERING OF MOLECULES CORRESPONDS OF THE MOLECULAR LISTING OF TABLE-1 

Sl. 

No. 

Experimental 

Log(η) 
Value 

Calculated Log(η) 
values 

2 descriptors 
model 

Residual Calculated Log 

(η) values 

3 descriptors 
model 

Residual Calculated 

Log(η) values 

4 descriptors 
model 

Residual Predicted 

Log(η) 
Values by 

ASNN 

Residual 

1 -7.4236 -6.8407 -0.58291 -6.7908 -0.63277 -7.6786 0.25502 -7.43 0.01 

2 -5.5130 -5.9713 -0.45834 -5.9343 0.42129 -5.8397 0.32668 -5.59 0.08 

3 -5.2030 -5.3410 0.13801 -5.3256 0.12257 -5.2692 0.06617 -5.44 0.24 

4 -5.2766 -5.7016 0.42503 -5.6602 0.38361 -5.5839 0.30737 -5.38 0.1 

5 -5.3743 -5.5627 0.18837 -5.5662 0.19191 -5.4955 0.12120 -5.33 -0.04 

6 -6.3654 -6.5099 0.14448 -6.5233 0.15790 -6.4561 0.09070 -6.57 0.2 

7 -6.7254 -6.1495 -0.57598 -6.1290 -0.59640 -6.1888 -0.53661 -6.55 -0.18 

8 -6.1948 -5.7867 -0.40812 -5.8280 -0.36678 -5.7729 -0.42196 -5.74 -0.45 

9 -4.6254 -4.9006 0.27518 -4.9327 0.30732 -4.9575 0.33209 -4.75 0.16 

10 -6.1040 -5.8797 -0.22425 -5.8549 -0.24905 -5.7940 -0.30995 -5.98 -0.12 

11 -5.5450 -6.1420 0.59706 -6.1060 0.56101 -6.0303 0.48530 -6.04 0.5 

12 -3.0865 -3.0682 -0.01835 -3.0306 -0.05593 -2.9814 -0.10509 -2.86 -0.23 

13 -2.8824 -3.0674 0.18499 -3.0118 0.12944 -2.9638 0.08139 -2.79 -0.09 

14 -5.8266 -5.6100 -0.21666 -5.5808 -0.24587 -5.5070 -0.31962 -5.53 -0.3 

15 -5.5450 -5.6108 0.06577 -5.5995 0.05453 -5.5247 -0.02033 -5.55 0.01 

16 -2.0379 -2.7984 0.76052 -2.7565 0.71857 -2.6945 0.65659 -2.18 0.14 

17 -5.5215 -5.3402 -0.18124 -5.3066 -0.21483 -5.2512 -0.27021 -5.43 -0.09 

18 -5.2903 -5.0705 -0.21987 -5.0325 -0.25788 -5.0077 -0.28263 -5.21 -0.08 

19 -4.9598 -4.8007 -0.15912 -4.7584 -0.20149 -4.7700 -0.18980 -4.98 0.02 

20 -5.0313 -4.8015 -0.22983 -4.7771 -0.25424 -4.7877 -0.24366 -5.00 -0.03 

21 -4.7189 -4.6895 -0.02944 -4.6653 -0.05361 -4.7058 -0.01307 -4.66 -0.06 

22 -4.2745 -4.4197 0.17221 -4.3911 0.14363 -4.4730 0.22549 -4.44 0.19 

23 -4.2416 -4.1500 -0.09168 -4.1170 -0.12463 -4.2413 -0.00033 -4.18 -0.06 

24 -6.5981 -6.4904 -0.10770 -6.3528 -0.24531 -6.2582 -0.33988 -6.32 -0.28 

25 -5.1886 -5.8797 0.69114 -6.0369 0.84831 -5.9564 0.76787 -5.52 0.33 

26 -6.6935 -6.6211 -0.07237 -6.8444 0.15092 -6.7827 0.08929 -6.61 -0.08 

27 -3.9170 -3.3371 -0.57990 -3.2254 -0.69163 -3.2685 -0.64855 -3.89 -0.03 

28 0.3988 0.0354 0.36338 0.0840 0.31475 0.1043 0.29451 0.181 0.218 

29 -3.3326 -2.9744 -0.35824 -2.9850 -0.34760 -2.9427 -0.38991 -3.06 -0.27 

30 -2.0557 -2.5279 0.47218 -2.4105 0.35474 -2.3689 0.31317 -1.92 -0.14 

31 -1.1301 -1.2347 0.10464 -1.2551 0.12498 -1.3420 0.21186 -1.08 -0.05 

32 -3.3697 -2.4814 -0.88826 -2.8396 -0.53013 -2.9679 -0.40182 -3.47 0.1 

33 -5.5597 -5.4239 0.13576 -5.5270 -0.03266 -5.5394 -0.02026 -5.35 -0.21 

34 -3.0159 -2.6116 -0.40433 -2.6840 -0.33194 -2.7093 -0.30667 -3.09 0.07 

35 -6.3890 -6.8317 0.44271 -6.8362 0.44726 -6.5846 0.19563 -6.48 0.09 
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descriptors with R2 = 0.962 for the optimal value of λ= -1.4.

The calculated results of log (η) values from eqns.7-9 were

given in the Table-2. The cross validation results show a small

increase when compared with those obtained in the calibration

process (R2 (cv)= 0.968, SE (cv)= 0.333)

 

 

Fig. 2. Plot of experimental log (η) values against calculated log (η) values

using MLR (four descriptor model)

 

 

Fig. 3.  Scatter plot of residuals against experimental log (η) values. (four

descriptor model)

 Fig. 4. Plot of experimental viscosity against calculated using ASNN.

 

Fig. 5. Scatter plot of residual against experimental log (h) values (ASNN)

The plot of the calculated versus experimental log(η) of

the best four descriptor model is shown in Figs. 2 and 3. shows

the scatter plot between residual of MLR calculated values

and experimental log (η) values. Fig. 2. shows that there is a

good agreement between experimental and calculated values

using MLR (4 descriptor model) and Fig. 3. shows that there

is no systematical. The MLR analysis shows that all the three

models to contains VM2 and NOH, but the values of R2 and SE

were significantly reduced after the removal of NOH. So that

NOH is a important descriptor which reflects hydrogen bonding

and plays key factor in control liquid viscosity. The four

descriptors used in MLR analysis were applied to train the

ASNN for comparative study.

Associative neural network (ASNN) represents an inno-

vative method to calculate nonlinear models between structure

and property. In the present study, the network involves four

neurons (VM2
[λ=-1.4], NOH, MW & 1/Nc2) in the input layer, seven

neurons in the hidden layer and one neuron in the output layer

(log η). The network is trained using the Leven Berg Marquardt

algorithm. Number of hidden neuron was decided by training

and predicting the training data by varying the number of

hidden neurons in the hidden layer. A suitable configuration

has to be chosen for the best performance of the network. Out

of the different configuration tested, a hidden layer with 7

hidden neurons produced the best result for prediction of

viscosity of alcohols. The performance of the associative neural

network QSPR model for viscosity estimation is summarized

in Table-2 and Figs. 4 and 5. The correlation coefficient (R2)

of 0.991 and RMSE of 0.2158 log units shows a good agree-

ment of ASNN predicted values with experimental one (Fig. 4).

The propagation of residuals on the both sides of the zero

(Fig. 5) indicates that there is no systematic error in using

ASNN model. The distribution of residual values are given in

Table-2. Table-2 clearly shows the high statistical quality

performance of the selected ASNN model. The number of

alcohols not correctly predicted by the model is very limited.

Thus, only two alcohols have their residual value within 0.50

log units (absolute value) and glycerol have residual of 0.218

log units, which is very low compared to MLR models.
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Conclusion

The variable Zagreb index VM2 was used in the structure

- viscosity modeling of alcohols. Two, three and four descriptor

models were performed with MLR. The best one is the four

descriptor models with R2 = 0.962 and SE = 0.3858 log units

for the optimal regression value of -1.4. The predictive ability

of the MLR models were tested by leave-one-out cross valida-

tion method, showing QSPR model is stable and can be used

to obtain good predictions for viscosity of alcohols. The four

descriptors used in best MLR model was applied to the ASNN

for training purpose. The results shows that, ASNN predicts

viscosity very well with R2 = 0.991 and RMSE = 0.2158 during

training phase. The ASNN produces high statistical quality

and low prediction error model compared with MLR analysis.
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